Skip to main content

Compute GV and GW invariants of CY manifolds.

Project description

cygv

Rust CI Python CI Crates.io Version PyPI - Version PyPI - Downloads

⚠️ WARNING ⚠️ This project is still in early stages. The code and documentation are under active development and may change significantly.

This project implements an efficient algorithm to perform the HKTY procedure [1, 2] to compute Gopakumar-Vafa (GV) and Gromov-Witten (GW) invariants of Calabi-Yau (CY) manifolds obtained as hypersurfaces or complete intersections in toric varieties. This project is based on the work presented in the paper "Computational Mirror Symmetry", but written in the Rust programming language and with some additional improvements.

License

Licensed under either of

at your option.

Contribution

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cygv-0.1.1.tar.gz (42.5 kB view details)

Uploaded Source

Built Distributions

cygv-0.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (822.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

cygv-0.1.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl (639.1 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

cygv-0.1.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (748.0 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

cygv-0.1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (824.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

cygv-0.1.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl (640.9 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

cygv-0.1.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (750.0 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

cygv-0.1.1-cp39-abi3-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.9+ Windows x86-64

cygv-0.1.1-cp39-abi3-musllinux_1_2_x86_64.whl (887.6 kB view details)

Uploaded CPython 3.9+ musllinux: musl 1.2+ x86-64

cygv-0.1.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (824.5 kB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ x86-64

cygv-0.1.1-cp39-abi3-macosx_11_0_arm64.whl (640.5 kB view details)

Uploaded CPython 3.9+ macOS 11.0+ ARM64

cygv-0.1.1-cp39-abi3-macosx_10_9_x86_64.whl (749.7 kB view details)

Uploaded CPython 3.9+ macOS 10.9+ x86-64

File details

Details for the file cygv-0.1.1.tar.gz.

File metadata

  • Download URL: cygv-0.1.1.tar.gz
  • Upload date:
  • Size: 42.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for cygv-0.1.1.tar.gz
Algorithm Hash digest
SHA256 fa421931db225f3f1b6a9769bbbbbd6a836bcee7674db1991ec853269e05c768
MD5 36ddeb96a71e123dd50dc5e84803c09c
BLAKE2b-256 3818a13aa79fa8efc8de03f1291f50343088c1121abe2bd26bb6299d4d1e6c59

See more details on using hashes here.

File details

Details for the file cygv-0.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cygv-0.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 50e6cab4b1b1cc372974cf3e3fe7854affdcf3b96720566dd6b4e29e60def127
MD5 571e3c9d491c513ca2a91ee88231ed6b
BLAKE2b-256 d77d174bc7c09f7fd36ad97959ea8667bba9d47b6fe16cb9f27efccdd0080d67

See more details on using hashes here.

File details

Details for the file cygv-0.1.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cygv-0.1.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0a2d5ff5d714a3abe7abba1b91f761b68ef60409ed53a69165651cd4b890d2f3
MD5 3acffce46eab57ce67ae81c8a861d5a0
BLAKE2b-256 388a264531ffe041b1c197d85e9e3688cae0ae494a0ba1a6763b748a1cc9af56

See more details on using hashes here.

File details

Details for the file cygv-0.1.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for cygv-0.1.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 fc13cd36d216f7218731c479bc072806abc35db2cc24e1101fa654f6519a93c2
MD5 d5dd2cc07c5e2f8ca3bb83f876273abb
BLAKE2b-256 8f2b928da0c09617e77de88d9c17274f77ae9f2078b034f4c80d18228937b3ea

See more details on using hashes here.

File details

Details for the file cygv-0.1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cygv-0.1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d7e03b9a2d44341f87ec95c8d945bc218a11d01722a2782d3bb56ae2af1aee60
MD5 adaef69ed656defa8dc21c23f9b128ba
BLAKE2b-256 0c9f9fa40f4347cf4aa14963a590334538cbae9be6bb7f7f2432ce56de9e77b5

See more details on using hashes here.

File details

Details for the file cygv-0.1.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cygv-0.1.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 72f7b704af4b9c4a7ce8c3d078abc6639c2dbdd00bcb3244ec9eb5ed170e8c2f
MD5 b4ff0cda6dea3d439f5f38600842dfcd
BLAKE2b-256 91ddc0e81b01790a09585045f422d76e11c49aa3cafc91ae504aa81ba3fe18fe

See more details on using hashes here.

File details

Details for the file cygv-0.1.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for cygv-0.1.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 7bc91c14a5b2ce394b75117906fe9e965991c3de225b7882e8bb34f557bc2423
MD5 e48dab6ed9b267731b62e8f6f7bf9b65
BLAKE2b-256 0477110bfd06827e73189fffc43d0ed4b27937b2b23323c390245dee749a3de6

See more details on using hashes here.

File details

Details for the file cygv-0.1.1-cp39-abi3-win_amd64.whl.

File metadata

  • Download URL: cygv-0.1.1-cp39-abi3-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9+, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for cygv-0.1.1-cp39-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 e38026f4f2e820f5b5462893f2b5d1416705a3b5c25d69ab2f46e96d19a1a308
MD5 bf0ad3753d4170e7face4cf469f7a5b9
BLAKE2b-256 a24266e24fcad7211639a5106b78f3ad71e5766e6274c38c75da487541f9cde4

See more details on using hashes here.

File details

Details for the file cygv-0.1.1-cp39-abi3-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for cygv-0.1.1-cp39-abi3-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 40603b756fcd828cfa2474beaf3e0b7cdef4350d6d500f6f5bf04c1a246f7313
MD5 42d3227663259dd7c112a1bb59638860
BLAKE2b-256 85a6320f75bcd97c8e628ff56d52447357b561d48520e83e2413e0352522bb03

See more details on using hashes here.

File details

Details for the file cygv-0.1.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cygv-0.1.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 faa6a738c219c8504c363b29e331f379f0283b112a54d1289f37ec68497e3e38
MD5 188abf8b91c951554c74bb7b90857bc1
BLAKE2b-256 3b308fd4a62e5bd265a3a8716d742fde488a72f506fcff5d6f8bf71f33ab312d

See more details on using hashes here.

File details

Details for the file cygv-0.1.1-cp39-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cygv-0.1.1-cp39-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 17b54a6e0ad010d63aded8a7a1f2b3b0b16c6891d12d822f746d1cbb8425a709
MD5 4bada9d03b5108a70c304042a300b1c6
BLAKE2b-256 9e85c838183f7334698be8585acd736ccea3dd73574bc29d7e47314c92abeaa6

See more details on using hashes here.

File details

Details for the file cygv-0.1.1-cp39-abi3-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cygv-0.1.1-cp39-abi3-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 22169d40ad9de35fa652778dc291ac9464e50ba5ae27283919cd3d0618d20d0c
MD5 e3f99cf8ce02a75e3552005fb9dbcbe5
BLAKE2b-256 ef0e113873906541eb2a6945de5c4e0751feed31b92c6dfc3d7d41244c5a4450

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page