Skip to main content

Compute GV and GW invariants of CY manifolds.

Project description

cygv

Rust CI

[!WARNING] This project is still in early stages. The code and documentation are under active development and may change significantly.

This project implements an efficient algorithm to perform the HKTY procedure [1, 2] to compute Gopakumar-Vafa (GV) and Gromov-Witten (GW) invariants of Calabi-Yau (CY) manifolds obtained as hypersurfaces or complete intersections in toric varieties. This project is based on the work presented in the paper "Computational Mirror Symmetry", but written in the Rust programming language and with some additional improvements.

License

Licensed under either of

at your option.

Contribution

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cygv-0.0.1.tar.gz (38.1 kB view details)

Uploaded Source

Built Distributions

cygv-0.0.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (796.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

cygv-0.0.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (833.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

cygv-0.0.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl (622.2 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

cygv-0.0.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl (726.9 kB view details)

Uploaded PyPy macOS 10.12+ x86-64

cygv-0.0.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (797.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

cygv-0.0.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (833.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

cygv-0.0.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl (623.7 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

cygv-0.0.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl (728.2 kB view details)

Uploaded PyPy macOS 10.12+ x86-64

cygv-0.0.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (797.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

cygv-0.0.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (833.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

cygv-0.0.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl (623.7 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

cygv-0.0.1-pp38-pypy38_pp73-macosx_10_12_x86_64.whl (728.2 kB view details)

Uploaded PyPy macOS 10.12+ x86-64

cygv-0.0.1-cp38-abi3-musllinux_1_2_x86_64.whl (861.0 kB view details)

Uploaded CPython 3.8+ musllinux: musl 1.2+ x86-64

cygv-0.0.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (798.3 kB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

cygv-0.0.1-cp38-abi3-manylinux_2_17_i686.manylinux2014_i686.whl (834.8 kB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ i686

cygv-0.0.1-cp38-abi3-macosx_11_0_arm64.whl (624.3 kB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

cygv-0.0.1-cp38-abi3-macosx_10_12_x86_64.whl (728.2 kB view details)

Uploaded CPython 3.8+ macOS 10.12+ x86-64

File details

Details for the file cygv-0.0.1.tar.gz.

File metadata

  • Download URL: cygv-0.0.1.tar.gz
  • Upload date:
  • Size: 38.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for cygv-0.0.1.tar.gz
Algorithm Hash digest
SHA256 7b6d084375cb96cd3efc0995b968d3491015e4ebf6f304557b7d22ec26e03bbf
MD5 7ecab2da95b16f3af0e2f4d650bbf684
BLAKE2b-256 52891485857e5ff67af512a74da4d47f49a94eb771a5b68837d2444f74b65e9f

See more details on using hashes here.

File details

Details for the file cygv-0.0.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cygv-0.0.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 43fdbbb01fed7daa2c33ffc15a35369511e12bde2ea2b67d90a3dd9939eed932
MD5 c10d964c511b2e8281299af176cf4bb0
BLAKE2b-256 5dbf3580d7225e9b681a0bad7697a890ac43bc1357f9a64eba84ef8d903602a7

See more details on using hashes here.

File details

Details for the file cygv-0.0.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for cygv-0.0.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 418a9ebd303825f690fe2fb7d21efcea09597233cedf4bd22c2d374c9f00bfa7
MD5 012d8aaf6fa8ec4b6d47e54687bfa90a
BLAKE2b-256 40ef93cf73be2c0d61225c37ef45ae9a5fec5b290e1be8cfdbb7232fe24866bd

See more details on using hashes here.

File details

Details for the file cygv-0.0.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cygv-0.0.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 11285faed21f1f7ef1b0d442cb5b1017937d8f9e57d7031c950f2621476c70e7
MD5 1565ced3746cd1d85dc867fb5fecd941
BLAKE2b-256 1660eea1687dd621db057f9fece48aa7d97127b29e7e5e660dbe5be2389bfe7c

See more details on using hashes here.

File details

Details for the file cygv-0.0.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for cygv-0.0.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 6715492b195ce9b6c077e0beb8bf467f3668b30635d9ba737ae72347ec652f6c
MD5 88ef3b23fe6f7f0747b8c32512b91fb6
BLAKE2b-256 c0ed86d015dda0b0fb9c2ef9d3941ca3c2adfb2701023d90d9ae8023f0ab3d54

See more details on using hashes here.

File details

Details for the file cygv-0.0.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cygv-0.0.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 72712f7ad85f40d99751f69f32bb24d27186073ca9ac8bb34f3c944a0e09a9e3
MD5 a689b5f6a5cdcf33a517740540df1a45
BLAKE2b-256 7822308f7d92270a1fdd4ef76ce4a236463bb1d3d717b54f5b704f58f97eacc8

See more details on using hashes here.

File details

Details for the file cygv-0.0.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for cygv-0.0.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 21f0b44129a15f94ca35e8329d5f291868089f08a355e1d8fa8c690b8c1c1246
MD5 ce7e3af42a7ec624832ea7feab11a129
BLAKE2b-256 9244a45b331a3a92f7d8f733155231b37c673bdfaa7a70cbcd37236fdfb27750

See more details on using hashes here.

File details

Details for the file cygv-0.0.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cygv-0.0.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 16beff563ebd38efb20496baf3f44d1fa97df413c724f1af94d0a8d80eb711bf
MD5 c87352daa146ff7b3324699c738b9df1
BLAKE2b-256 376baa97e93dcad16b65bdba45ac4fc01de6f459dded51272d716e70e8dcd0b8

See more details on using hashes here.

File details

Details for the file cygv-0.0.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for cygv-0.0.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 9b0cf221c6ade3ad3fbc88a78e92ef03cd4ab09da2f79c1d7adf474509cccfdf
MD5 8ed8dc673ad4c71df6f2b5c01f0f76f1
BLAKE2b-256 37bd423b3fb06a525609c04af2bccc7b50c71836d1ac3f3877d63608e55f9e82

See more details on using hashes here.

File details

Details for the file cygv-0.0.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cygv-0.0.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bdcf3794ba63be4112841eaa7c207210c7a39fccfcc64b19be7d42cccf11ce7d
MD5 d82d67eaad8d9c2c09c369fa1c9122b3
BLAKE2b-256 b66761724e936cd72d5cb107249368d03ebdb347697feda1aea55899972a9b02

See more details on using hashes here.

File details

Details for the file cygv-0.0.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for cygv-0.0.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0fc0a6b8601e61797edc3c7bef013dbeae3561cbcd65aa443ddc9f2ac0c1a1aa
MD5 7e6bd5494a45d746089c0354cd94be5e
BLAKE2b-256 50a0ee6525c3064a653d7e3dcfdeb140dce2b38aaf9a510414d14278f0b3f44f

See more details on using hashes here.

File details

Details for the file cygv-0.0.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cygv-0.0.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 613c7a7939f1c4f1767098c23bfc73184f51fa54b9ad5686cabdd59492a4f5da
MD5 62a344267f28a20d1cf6f1bcb15a4bc1
BLAKE2b-256 28833e213c3cfcfff573e8052696984ba5670a8695b53200bce7c01782a94099

See more details on using hashes here.

File details

Details for the file cygv-0.0.1-pp38-pypy38_pp73-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for cygv-0.0.1-pp38-pypy38_pp73-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 d5bf004e8311f42ec7cc91fe9f9912ef48b0d58cc26ac9fdd8135ed79a8617c8
MD5 e00073c9bfd411984523882b5d41c247
BLAKE2b-256 86d901e538371d690d1d2826397d7af3856e66fcd9f94c814c34d6e713a7a117

See more details on using hashes here.

File details

Details for the file cygv-0.0.1-cp38-abi3-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for cygv-0.0.1-cp38-abi3-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f53b00cc67aec63f8f1369d13cb98b9346d8152507d2d9d35387d57500af4081
MD5 baf58cf9f9e0b9734b49c10f430dfe2e
BLAKE2b-256 26ff1ff017c50b62037683a533d0cb0a1cc73fd7d5722309e8fbd9152553888e

See more details on using hashes here.

File details

Details for the file cygv-0.0.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cygv-0.0.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 381b57553ac46b0b9827c03df584cda60f18eaaff2e1bd66a9aba559843e78c0
MD5 6a6eb6c122758c8e3903897738c5adc5
BLAKE2b-256 38a179b85cd3acbaddabc777c04a5afb04cbd66d4c3af4b0ec112aec1d0df39c

See more details on using hashes here.

File details

Details for the file cygv-0.0.1-cp38-abi3-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for cygv-0.0.1-cp38-abi3-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ac77c5de0e5a90424eb73d40433ee1d142c323cd20996a7db9554c37493237cc
MD5 07b019d70cc89a7f59aed16ac4a44336
BLAKE2b-256 3e0787da91bed88cea959a25467d8ca614f120b5426240a1299e9f6677d8cc91

See more details on using hashes here.

File details

Details for the file cygv-0.0.1-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cygv-0.0.1-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 84e0e29988f9ecad30c475cd223dcadc30d6c63e1779d49e621b537d6d6cf8e9
MD5 6d6a01d28181d6bd8c8f821c3c9da062
BLAKE2b-256 aeadf514a0e2e43fa6636f22e7c0bf3a08d48a5f81ac2dd43887d10739425624

See more details on using hashes here.

File details

Details for the file cygv-0.0.1-cp38-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for cygv-0.0.1-cp38-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 20fe5cac80a350d5f1a52d90f41dde672e049f979ac330f29fb2beb6e73861d6
MD5 f6dfd8a4d790674e5af147890fdd60c6
BLAKE2b-256 cd1991bae7a6a0b3fa15cbad7c68e47e6d6bace6238c2a0f8b3a712c7cfb1e03

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page