Skip to main content

Learning Point Processes Using Deep Granger Nets

Project description

===============
cynet
===============

.. figure:: https://img.shields.io/pypi/dm/cynet.svg
:alt: cynet PyPI Downloads
.. figure:: https://img.shields.io/pypi/v/cynet.svg
:alt: cynet version

.. image:: http://zed.uchicago.edu/logo/logozed1.png
:height: 400px
:scale: 50 %
:alt: alternate text
:align: center

.. class:: no-web no-pdf

:Info: See <https://arxiv.org/abs/1406.6651> for theoretical background
:Author: ZeD@UChicago <zed.uchicago.edu>
:Description: Implementation of the Deep Granger net inference algorithm, described in https://arxiv.org/abs/1406.6651, for learning spatio-temporal stochastic processes (*point processes*). **cynet** learns a network of generative local models, without assuming any specific model structure.

.. NOTE:: If issues arise with dependencies in python3, be sure that *tkinter* is installed

.. code-block::

sudo apt-get install python3-tk

**Usage:**

.. code-block::

from cynet import cynet
from cynet.cynet import uNetworkModels as models
from viscynet import viscynet as vcn

**cynet module includes:**
* cynet
* viscynet

cynet library classes:
~~~~~~~~~~~~~~~~~~~~~~
* spatioTemporal
* uNetworkModels
* simulateModels
* xgModels

Examples of Pipeline:
You may find two examples of this pipeline in your enviroment's bin folder
after installing the cynet package. There will also be a pdf walking through
another extremely detailed example.

Produces detailed timeseries predictions using Deep Granger Nets.

.. image:: https://zed.uchicago.edu/img/cynetpred.png
:align: center
:scale: 50 %

Description of Pipeline:
You may find two examples of this pipeline in your enviroment's bin folder
after installing the cynet package.

Step 1:
Use the spatioTemporal class and its utility functions to fit and
manipulate your data into a timeseries grid. The end outputs will be triplets:
files that contain the rows (coordinates), the columns (dates), and the timeseries.
The splitTS function will help generate rows of the timeseries. Generally, we
use this to create timeseries beyond the length of the data in the triplets.
We use the triplets to generate predictive models and then split, which have
the longer timeseries to evaluate those models.

Step 2:
Run xGenESeSS on the triplets to generate predictive models. The
xgModels class can be used to assist in this step. If running on a cluster,
set run local to false and calling xgModels.run() will generate the shell
commands to run xGenESeSS in a text file. Otherwise, xgModels will run
locally using the binary installed with the package. The end result are predictive
models. Note that example 1 starts at this point. Thus there are sample models
provided.

Step 3:
To evaluate the models afterwards, use the run_pipeline utility function.
This calls uNetworkModels and simulateModels in parallel to evaluate each model.
simulateModels calls the cynet and flexroc binaries. Outputs will be auc, tpr,
and fpr statistics.

See example 2 for an example of the entire pipeline.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cynet-2.0.4.tar.gz (41.9 MB view details)

Uploaded Source

Built Distribution

cynet-2.0.4-py3-none-any.whl (41.4 MB view details)

Uploaded Python 3

File details

Details for the file cynet-2.0.4.tar.gz.

File metadata

  • Download URL: cynet-2.0.4.tar.gz
  • Upload date:
  • Size: 41.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/3.10.8

File hashes

Hashes for cynet-2.0.4.tar.gz
Algorithm Hash digest
SHA256 600cda04e671d35c6cf40718f5da3b1faf49de2747e07e2baef94a7a7f05f948
MD5 44631964dff1925c211e3974940422bc
BLAKE2b-256 218adadbf318c1dab09eb7ef00a090d6fffe6621f8129021f5ea68009488dd2f

See more details on using hashes here.

File details

Details for the file cynet-2.0.4-py3-none-any.whl.

File metadata

  • Download URL: cynet-2.0.4-py3-none-any.whl
  • Upload date:
  • Size: 41.4 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/3.10.8

File hashes

Hashes for cynet-2.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 7a649f4bfd849b5d954e0c05349f4dd4e5a6203ef400e7af04d7ea793a369473
MD5 a340b2b7d9362c81f991598a21224b2f
BLAKE2b-256 099861c0b70649a12797eda67ca1b576ff7a33c389bd2371047df4fd83f9ac57

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page