Skip to main content

CYPstrate: Prediction of Cytochrome P450 substrates

Project description

Cypstrate

CYPstrate consists of a collection of machine learning classifiers (random forest and support vector machines) for the prediction of substrates and non-substrates of the nine most important human CYP isozymes in the metabolism of xenobiotics (i.e. CYPs 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A4). The models are trained on a high-quality data set of 1831 substrates and non-substrates compiled from public sources.

Installation

# requires Python 3.8
pip install -U cypstrate

Usage

CYPstrate can be called from the command line. Examples:

# input in SMILES format
cypstrate "CCOC(=O)N1CCN(CC1)C2=C(C(=O)C2=O)N3CCN(CC3)C4=CC=C(C=C4)OC"

# prediction is one of "best_performance" (default) or "full_coverage"
cypstrate --prediction-mode full_coverage "CCN(C)C(=O)OC1=CC=CC(=C1)C(C)N(C)C"

# input can be a file
cypstrate molecules.sdf > result.csv

# output format can be specified
cypstrate --output sdf molecules.smiles > result.sdf

# more information via --help
cypstrate --help

The model can be used in Python. Calling the predict function of the CypstrateModel class results in a pandas DataFrame containing the prediction results for each input molecule.

from cypstrate import CypstrateModel

model = CypstrateModel()

# "predict" method accepts a list of SMILES representations
df_predictions = model.predict(['CCN(C)C(=O)OC1=CC=CC(=C1)C(C)N(C)C'])

# ... or a list of file paths
df_predictions = model.predict(['part1.sdf', 'part2.sdf'])

The result DataFrame contains the columns:

  • mol_id: unique number identifying the input molecule
  • input: the raw representation provided as input (e.g. OCCCCC)
  • input_type: the representation type of the input (e.g. smiles)
  • source: the input source (e.g. my_molecules.sdf)
  • name: the name of the input molecule (if provided in the input)
  • input_mol: the RDKit molecule parsed from the input representation
  • preprocessed_mol: the RDKit molecule after preprocessing
  • errors: a list of errors that occured during reading or preprocessing the input
  • prediction_1a2, prediction_2a6, prediction_2b6, prediction_2c8, prediction_2c9, prediction_2c19, prediction_2d6, prediction_2e1, prediction_3a4: probability (between 0 and 1) of being a substrate of the given CYP isozyme
  • neighbor_1a2, neighbor_2a6, neighbor_2b6, neighbor_2c8, neighbor_2c9, neighbor_2c19, neighbor_2d6,neighbor_2e1,neighbor_3a4: similarity to the most similar molecule in the corresponding training set

Contribute

conda env create -f environment.yml
conda activate cypstrate
pip install -e .[dev,test]
ptw

Contributors

  • Malte Holmer
  • Steffen Hirte
  • Axinya Tokareva

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cypstrate-0.1.6.tar.gz (97.9 MB view details)

Uploaded Source

Built Distribution

cypstrate-0.1.6-py3-none-any.whl (99.1 MB view details)

Uploaded Python 3

File details

Details for the file cypstrate-0.1.6.tar.gz.

File metadata

  • Download URL: cypstrate-0.1.6.tar.gz
  • Upload date:
  • Size: 97.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.15

File hashes

Hashes for cypstrate-0.1.6.tar.gz
Algorithm Hash digest
SHA256 28c24199d1018be9609ede4fd4f33ac4e39fe5ae02843df97568ea8dad2724d4
MD5 c9ecbef7afaa42a41a14996dd06792c5
BLAKE2b-256 c74a3d96cf2a139627470eb24d08ac498ff5ffcc86b1103751062e1bc6123783

See more details on using hashes here.

File details

Details for the file cypstrate-0.1.6-py3-none-any.whl.

File metadata

  • Download URL: cypstrate-0.1.6-py3-none-any.whl
  • Upload date:
  • Size: 99.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.15

File hashes

Hashes for cypstrate-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 7346a1a8cd1d7cd0f3114766dd59b03f2d495d773b24aaee8956952fed92efec
MD5 6c7c8e6913353795ccaf4f885babfc3c
BLAKE2b-256 028e802c35baa7b10d562073b9760c87b7c76e1cf7b44fdeb40cd2e5fddc126b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page