Skip to main content

CYPstrate: Prediction of Cytochrome P450 substrates

Project description

Cypstrate

CYPstrate consists of a collection of machine learning classifiers (random forest and support vector machines) for the prediction of substrates and non-substrates of the nine most important human CYP isozymes in the metabolism of xenobiotics (i.e. CYPs 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A4). The models are trained on a high-quality data set of 1831 substrates and non-substrates compiled from public sources.

Installation

pip install -U cypstrate

Usage

CYPstrate can be called from the command line. Examples:

# input in SMILES format
cypstrate "CCOC(=O)N1CCN(CC1)C2=C(C(=O)C2=O)N3CCN(CC3)C4=CC=C(C=C4)OC"

# prediction is one of "best_performance" (default) or "full_coverage"
cypstrate --prediction_mode full_coverage "CCN(C)C(=O)OC1=CC=CC(=C1)C(C)N(C)C"

# input can be a file
cypstrate molecules.sdf > result.csv

# output format can be specified
cypstrate --output sdf molecules.smiles > result.sdf

# more information via --help
cypstrate --help

The model can be used in Python. Calling the predict function of the CypstrateModel class results in a pandas DataFrame containing the prediction results for each input molecule.

from cypstrate import CypstrateModel

model = CypstrateModel()

# "predict" method accepts a list of SMILES representations
df_predictions = model.predict(['CCN(C)C(=O)OC1=CC=CC(=C1)C(C)N(C)C'])

# ... or a list of file paths
df_predictions = model.predict(['part1.sdf', 'part2.sdf'])

The result DataFrame contains the columns:

  • mol_id: unique number identifying the input molecule
  • input: the raw representation provided as input (e.g. OCCCCC)
  • input_type: the representation type of the input (e.g. smiles)
  • source: the input source (e.g. my_molecules.sdf)
  • name: the name of the input molecule (if provided in the input)
  • input_mol: the RDKit molecule parsed from the input representation
  • preprocessed_mol: the RDKit molecule after preprocessing
  • errors: a list of errors that occured during reading or preprocessing the input
  • prediction_1a2, prediction_2a6, prediction_2b6, prediction_2c8, prediction_2c9, prediction_2c19, prediction_2d6, prediction_2e1, prediction_3a4: probability (between 0 and 1) of being a substrate of the given CYP isozyme
  • neighbor_1a2, neighbor_2a6, neighbor_2b6, neighbor_2c8, neighbor_2c9, neighbor_2c19, neighbor_2d6,neighbor_2e1,neighbor_3a4: similarity to the most similar molecule in the corresponding training set

Contribute

conda env create -f environment.yml
conda activate cypstrate
pip install -e .[dev,test]
ptw

Contributors

  • Malte Holmer
  • Steffen Hirte
  • Axinya Tokareva

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cypstrate-0.1.3.tar.gz (40.2 MB view details)

Uploaded Source

File details

Details for the file cypstrate-0.1.3.tar.gz.

File metadata

  • Download URL: cypstrate-0.1.3.tar.gz
  • Upload date:
  • Size: 40.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.15

File hashes

Hashes for cypstrate-0.1.3.tar.gz
Algorithm Hash digest
SHA256 664aeb9ed1e84b71878a72292b5c46fdee24727a1242b1da9903ded4808d6e09
MD5 feb08a898a5340d7668980222f0efb16
BLAKE2b-256 ea43c817be42089e05304b3656cc9d70a1be6cb72c6b9f3ab0332ea25485b80b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page