CYPstrate: Prediction of Cytochrome P450 substrates
Project description
Cypstrate
CYPstrate consists of a collection of machine learning classifiers (random forest and support vector machines) for the prediction of substrates and non-substrates of the nine most important human CYP isozymes in the metabolism of xenobiotics (i.e. CYPs 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A4). The models are trained on a high-quality data set of 1831 substrates and non-substrates compiled from public sources.
Installation
# requires Python 3.8
pip install -U cypstrate
Usage
CYPstrate can be called from the command line. Examples:
# input in SMILES format
cypstrate "CCOC(=O)N1CCN(CC1)C2=C(C(=O)C2=O)N3CCN(CC3)C4=CC=C(C=C4)OC"
# prediction is one of "best_performance" (default) or "full_coverage"
cypstrate --prediction-mode full_coverage "CCN(C)C(=O)OC1=CC=CC(=C1)C(C)N(C)C"
# input can be a file
cypstrate molecules.sdf > result.csv
# output format can be specified
cypstrate --output sdf molecules.smiles > result.sdf
# more information via --help
cypstrate --help
The model can be used in Python. Calling the predict
function of the
CypstrateModel
class results in a pandas DataFrame containing the prediction
results for each input molecule.
from cypstrate import CypstrateModel
model = CypstrateModel()
# "predict" method accepts a list of SMILES representations
df_predictions = model.predict(['CCN(C)C(=O)OC1=CC=CC(=C1)C(C)N(C)C'])
# ... or a list of file paths
df_predictions = model.predict(['part1.sdf', 'part2.sdf'])
The result DataFrame contains the columns:
- mol_id: unique number identifying the input molecule
- input: the raw representation provided as input (e.g. OCCCCC)
- input_type: the representation type of the input (e.g. smiles)
- source: the input source (e.g. my_molecules.sdf)
- name: the name of the input molecule (if provided in the input)
- input_mol: the RDKit molecule parsed from the input representation
- preprocessed_mol: the RDKit molecule after preprocessing
- errors: a list of errors that occured during reading or preprocessing the input
- prediction_1a2, prediction_2a6, prediction_2b6, prediction_2c8, prediction_2c9, prediction_2c19, prediction_2d6, prediction_2e1, prediction_3a4: probability (between 0 and 1) of being a substrate of the given CYP isozyme
- neighbor_1a2, neighbor_2a6, neighbor_2b6, neighbor_2c8, neighbor_2c9, neighbor_2c19, neighbor_2d6,neighbor_2e1,neighbor_3a4: similarity to the most similar molecule in the corresponding training set
Contribute
conda env create -f environment.yml
conda activate cypstrate
pip install -e .[dev,test]
ptw
Contributors
- Malte Holmer
- Steffen Hirte
- Axinya Tokareva
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file cypstrate-0.1.5.tar.gz
.
File metadata
- Download URL: cypstrate-0.1.5.tar.gz
- Upload date:
- Size: 97.9 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 856e56cd496f5b2c7e8f36196bae78ef98d4f5dac2cbfcd1974f2a4685bb5e5a |
|
MD5 | 15543934d454bec93bf5b0198cad0fae |
|
BLAKE2b-256 | 304c01a74584bc6e602334d3d97e951c8dbf7ade45d66c5688728696e9447559 |
File details
Details for the file cypstrate-0.1.5-py3-none-any.whl
.
File metadata
- Download URL: cypstrate-0.1.5-py3-none-any.whl
- Upload date:
- Size: 99.1 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c264437b73b861841b655fe8077977327362af6cff635c90031cb47ff973c5b2 |
|
MD5 | 78cf3926d22b22bd1d45fea709eff22e |
|
BLAKE2b-256 | c8caeba26e51eec5a6be779b309bc7e91b8afa817c2e97b4b93ef716a9f27f2c |