Locates values in NumPy Arrays with Cython
Project description
Locates values in NumPy Arrays with Cython
pip install cythonflatiter
Tested against Windows / Python 3.11 / Anaconda
Cython (and a C/C++ compiler) must be installed
FlatIterArray is a utility class for efficiently searching multi-dimensional array data.
| __init__(self, a, dtype=<class 'numpy.int64'>, unordered=True)
| Initializes a FlatIterArray instance.
|
| Parameters:
| - a (numpy.ndarray): The input array.
| - dtype (numpy.dtype, optional): The data type of the index array that will be created. Defaults to np.int64. (It's better not to change that, because it corresponds to cython.Py_ssize_t)
| - unordered (bool, optional): Flag indicating whether to use unordered iterations. Defaults to True. (index array will be created using multiprocessing)
|
| get_flat_pointer_array_from_orig_data(self)
| Returns a flat pointer array from the original data.
| If you change data here, it changes also in the original array
|
| Returns:
| - numpy.ndarray: Flat pointer array.
|
| search_multiple_values_in_array(self, values)
| Searches for multiple values in the array and returns indices and values.
|
| Parameters:
| - values (list or numpy.ndarray): List of values to search for.
|
| Returns:
| - tuple: Array of indices and array of found values.
|
| search_single_value_in_array(self, value)
| Searches for a single value in the array and returns indices.
|
| Parameters:
| - value: The value to search for.
|
| Returns:
| - numpy.ndarray: Array of indices.
|
| sequence_is_in_dimension(self, seq, last_dim)
| Checks if a sequence is in a dimension
|
| Parameters:
| - seq (list or numpy.ndarray): List of values representing the sequence.
| - last_dim: The dimension to search in.
|
| Returns:
| - numpy.ndarray: Array of indices.
|
| update_iterarray(self, dtype=<class 'numpy.int64'>, unordered=True)
| Updates the iterray attribute with new parameters.
|
| Parameters:
| - dtype (numpy.dtype, optional): The data type of the index array that will be created. Defaults to np.int64.
| - unordered (bool, optional): Flag indicating whether to use unordered iterations. Defaults to True. (index array will be created using multiprocessing)
|
| value_is_in_dimension(self, value, last_dim)
| Checks if a value is in a dimension
|
| Parameters:
| - value: The value to search for.
| - last_dim: The dimension to search in.
|
| Returns:
| - numpy.ndarray: Array of indices.
import numpy as np
import cv2
from cythonflatiter import FlatIterArray
data = cv2.imread(r"C:\Users\hansc\Desktop\2023-08-29xx16_07_30-Window.png")
f = FlatIterArray(data, dtype=np.int64, unordered=True)
results255inarray = f.search_single_value_in_array(255)
# results255inarray
# Out[6]:
# array([[195330, 34, 0, 0],
# [201075, 35, 0, 0],
# [206820, 36, 0, 0],
# ...,
# [488324, 84, 1914, 2],
# [494069, 85, 1914, 2],
# [499814, 86, 1914, 2]], dtype=int64)
# print(data[84,1914,2])
# print(data[34,0,0])
# 255
# 255
indices, found_values = f.search_multiple_values_in_array(values=[255, 11, 0])
# indices,found_values
# Out[12]:
# (array([[195330, 34, 0, 0],
# [201075, 35, 0, 0],
# [206820, 36, 0, 0],
# ...,
# [488324, 84, 1914, 2],
# [494069, 85, 1914, 2],
# [499814, 86, 1914, 2]], dtype=int64),
# array([255, 255, 255, ..., 255, 255, 255], dtype=uint8))
concat_values = np.hstack([indices, found_values.reshape((-1, 1))])
# print(concat_values)
# [[195330 34 0 0 255]
# [201075 35 0 0 255]
# [206820 36 0 0 255]
# ...
# [488324 84 1914 2 255]
# [494069 85 1914 2 255]
# [499814 86 1914 2 255]]
# print(data[85,1914,2])
# print(data[36,0,0])
lastdimwith255 = f.value_is_in_dimension(255, 3)
# lastdimwith255
# Out[31]:
# array([[195330, 34, 0],
# [201075, 35, 0],
# [206820, 36, 0],
# ...,
# [488322, 84, 1914],
# [494067, 85, 1914],
# [499812, 86, 1914]], dtype=int64)
# print(data[86,1914])
# print(data[34,0])
# [255 255 255]
# [255 255 255]
penultimatedimwith255255 = f.sequence_is_in_dimension([255, 255, 255], 2)
# penultimatedimwith255255
# Out[38]:
# array([[ 0, 0],
# [ 5745, 1],
# [ 11490, 2],
# ...,
# [5538180, 964],
# [5543925, 965],
# [5549670, 966]], dtype=int64)
# data[964]
# Out[40]:
# array([[255, 255, 255],
# [255, 255, 255],
# [255, 255, 255],
# ...,
# [ 43, 43, 43],
# [ 43, 43, 43],
# [ 43, 43, 43]], dtype=uint8)
ultimatedimwith255255255 = f.sequence_is_in_dimension([255, 255, 255], 3)
# ultimatedimwith255255255
# Out[42]:
# array([[195330, 34, 0],
# [201075, 35, 0],
# [206820, 36, 0],
# ...,
# [488322, 84, 1914],
# [494067, 85, 1914],
# [499812, 86, 1914]], dtype=int64)
# [750 433 0]
# [751 433 0]
# [752 433 0]
# [753 433 0]
# [754 433 0]
# [755 433 0]
# [756 433 0]
# [757 433 0]
# [758 433 0]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
cythonflatiter-0.10.tar.gz
(25.0 kB
view details)
Built Distribution
File details
Details for the file cythonflatiter-0.10.tar.gz
.
File metadata
- Download URL: cythonflatiter-0.10.tar.gz
- Upload date:
- Size: 25.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 297c93bb911bd1e632d26b53aa556c2b48961aa5ad3bd5970dc252ddd2d53f0e |
|
MD5 | 0b99bd271f99330167f22dc3499bc43f |
|
BLAKE2b-256 | 3f95c0f03d90f29cf0d097c1179826dcf381489a40c14037a4fc2ef8df0d5ca1 |
File details
Details for the file cythonflatiter-0.10-py3-none-any.whl
.
File metadata
- Download URL: cythonflatiter-0.10-py3-none-any.whl
- Upload date:
- Size: 25.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 39631ce324276653b66a22e20e6e27df743b718072805ebc3736b2e20826284e |
|
MD5 | 2999777af6a533655b22db0e25d63574 |
|
BLAKE2b-256 | 8fc9eb93c3ce0aaa2c8ccf7f89021ebbdf79b3f5fc62553b61955f716956f39e |