Skip to main content

Locates values in NumPy Arrays with Cython

Project description

Locates values in NumPy Arrays with Cython

pip install cythonflatiter

Tested against Windows / Python 3.11 / Anaconda

Cython (and a C/C++ compiler) must be installed

FlatIterArray is a utility class for efficiently searching multi-dimensional array data.

 |  __init__(self, a, dtype=<class 'numpy.int64'>, unordered=True)
 |      Initializes a FlatIterArray instance.
 |      
 |      Parameters:
 |      - a (numpy.ndarray): The input array.
 |      - dtype (numpy.dtype, optional): The data type of the index array that will be created. Defaults to np.int64. (It's better not to change that, because it corresponds to cython.Py_ssize_t)
 |      - unordered (bool, optional): Flag indicating whether to use unordered iterations. Defaults to True. (index array will be created using multiprocessing)
 |  
 |  get_flat_pointer_array_from_orig_data(self)
 |      Returns a flat pointer array from the original data.
 |      If you change data here, it changes also in the original array
 |      
 |      Returns:
 |      - numpy.ndarray: Flat pointer array.
 |  
 |  search_multiple_values_in_array(self, values)
 |      Searches for multiple values in the array and returns indices and values.
 |      
 |      Parameters:
 |      - values (list or numpy.ndarray): List of values to search for.
 |      
 |      Returns:
 |      - tuple: Array of indices and array of found values.
 |  
 |  search_single_value_in_array(self, value)
 |      Searches for a single value in the array and returns indices.
 |      
 |      Parameters:
 |      - value: The value to search for.
 |      
 |      Returns:
 |      - numpy.ndarray: Array of indices.
 |  
 |  sequence_is_in_dimension(self, seq, last_dim)
 |      Checks if a sequence is in a dimension
 |      
 |      Parameters:
 |      - seq (list or numpy.ndarray): List of values representing the sequence.
 |      - last_dim: The dimension to search in.
 |      
 |      Returns:
 |      - numpy.ndarray: Array of indices.
 |  
 |  update_iterarray(self, dtype=<class 'numpy.int64'>, unordered=True)
 |      Updates the iterray attribute with new parameters.
 |      
 |      Parameters:
 |      - dtype (numpy.dtype, optional): The data type of the index array that will be created. Defaults to np.int64.
 |      - unordered (bool, optional): Flag indicating whether to use unordered iterations. Defaults to True. (index array will be created using multiprocessing)
 |  
 |  value_is_in_dimension(self, value, last_dim)
 |      Checks if a value is in a dimension
 |      
 |      Parameters:
 |      - value: The value to search for.
 |      - last_dim: The dimension to search in.
 |      
 |      Returns:
 |      - numpy.ndarray: Array of indices.
 
 import numpy as np
import cv2
from cythonflatiter import FlatIterArray

data = cv2.imread(r"C:\Users\hansc\Desktop\2023-08-29xx16_07_30-Window.png")
f = FlatIterArray(data, dtype=np.int64, unordered=True)
results255inarray = f.search_single_value_in_array(255)
# results255inarray
# Out[6]:
# array([[195330,     34,      0,      0],
#        [201075,     35,      0,      0],
#        [206820,     36,      0,      0],
#        ...,
#        [488324,     84,   1914,      2],
#        [494069,     85,   1914,      2],
#        [499814,     86,   1914,      2]], dtype=int64)
# print(data[84,1914,2])
# print(data[34,0,0])
# 255
# 255
indices, found_values = f.search_multiple_values_in_array(values=[255, 11, 0])
# indices,found_values
# Out[12]:
# (array([[195330,     34,      0,      0],
#         [201075,     35,      0,      0],
#         [206820,     36,      0,      0],
#         ...,
#         [488324,     84,   1914,      2],
#         [494069,     85,   1914,      2],
#         [499814,     86,   1914,      2]], dtype=int64),
#  array([255, 255, 255, ..., 255, 255, 255], dtype=uint8))
concat_values = np.hstack([indices, found_values.reshape((-1, 1))])
# print(concat_values)
# [[195330     34      0      0    255]
#  [201075     35      0      0    255]
#  [206820     36      0      0    255]
#  ...
#  [488324     84   1914      2    255]
#  [494069     85   1914      2    255]
#  [499814     86   1914      2    255]]
# print(data[85,1914,2])
# print(data[36,0,0])
lastdimwith255 = f.value_is_in_dimension(255, 3)
# lastdimwith255
# Out[31]:
# array([[195330,     34,      0],
#        [201075,     35,      0],
#        [206820,     36,      0],
#        ...,
#        [488322,     84,   1914],
#        [494067,     85,   1914],
#        [499812,     86,   1914]], dtype=int64)
# print(data[86,1914])
# print(data[34,0])
# [255 255 255]
# [255 255 255]
penultimatedimwith255255 = f.sequence_is_in_dimension([255, 255, 255], 2)
# penultimatedimwith255255
# Out[38]:
# array([[      0,       0],
#        [   5745,       1],
#        [  11490,       2],
#        ...,
#        [5538180,     964],
#        [5543925,     965],
#        [5549670,     966]], dtype=int64)
# data[964]
# Out[40]:
# array([[255, 255, 255],
#        [255, 255, 255],
#        [255, 255, 255],
#        ...,
#        [ 43,  43,  43],
#        [ 43,  43,  43],
#        [ 43,  43,  43]], dtype=uint8)

ultimatedimwith255255255 = f.sequence_is_in_dimension([255, 255, 255], 3)
# ultimatedimwith255255255
# Out[42]:
# array([[195330,     34,      0],
#        [201075,     35,      0],
#        [206820,     36,      0],
#        ...,
#        [488322,     84,   1914],
#        [494067,     85,   1914],
#        [499812,     86,   1914]], dtype=int64)

# [750 433   0]
# [751 433   0]
# [752 433   0]
# [753 433   0]
# [754 433   0]
# [755 433   0]
# [756 433   0]
# [757 433   0]
# [758 433   0]

Project details


Release history Release notifications | RSS feed

This version

0.10

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cythonflatiter-0.10.tar.gz (25.0 kB view details)

Uploaded Source

Built Distribution

cythonflatiter-0.10-py3-none-any.whl (25.3 kB view details)

Uploaded Python 3

File details

Details for the file cythonflatiter-0.10.tar.gz.

File metadata

  • Download URL: cythonflatiter-0.10.tar.gz
  • Upload date:
  • Size: 25.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for cythonflatiter-0.10.tar.gz
Algorithm Hash digest
SHA256 297c93bb911bd1e632d26b53aa556c2b48961aa5ad3bd5970dc252ddd2d53f0e
MD5 0b99bd271f99330167f22dc3499bc43f
BLAKE2b-256 3f95c0f03d90f29cf0d097c1179826dcf381489a40c14037a4fc2ef8df0d5ca1

See more details on using hashes here.

File details

Details for the file cythonflatiter-0.10-py3-none-any.whl.

File metadata

File hashes

Hashes for cythonflatiter-0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 39631ce324276653b66a22e20e6e27df743b718072805ebc3736b2e20826284e
MD5 2999777af6a533655b22db0e25d63574
BLAKE2b-256 8fc9eb93c3ce0aaa2c8ccf7f89021ebbdf79b3f5fc62553b61955f716956f39e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page