Skip to main content

Parallel argsort with Cython - 2.5x faster than NumPy!

Project description

Parallel argsort with Cython - 2.5x faster than NumPy!

pip install cythonparallelargsort

Tested against Windows / Python 3.11 / Anaconda

Cython (and a C/C++ compiler) must be installed

A parallel argsort function for efficiently sorting numpy arrays in parallel. It utilizes Cython to generate optimized C++ code, taking advantage of OpenMP for parallelism.

from cythonparallelargsort import parallel_argsort
import pandas as pd
import numpy as np
df = pd.read_csv(
    "https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv"
)
df=pd.concat([df for _ in range(1000)],ignore_index=True)
df=df.sample(len(df))
indicopy=df.index.to_numpy().copy()
p1=parallel_argsort(indicopy,'parallel_buffered',)
p2=parallel_argsort(indicopy,'parallel',)
p3=parallel_argsort(indicopy,'sort')
p4=np.argsort(indicopy)

# p1
# Out[3]: array([125054,  85353, 788878, ...,  46414, 789033, 786844], dtype=int64)
# p2
# Out[4]: array([125054,  85353, 788878, ...,  46414, 789033, 786844], dtype=int64)
# p3
# Out[5]: array([125054,  85353, 788878, ...,  46414, 789033, 786844], dtype=int64)
# p4
# Out[6]: array([125054,  85353, 788878, ...,  46414, 789033, 786844], dtype=int64)


# df.index.shape
# Out[8]: (89100,)
# %timeit p1=parallel_argsort(indicopy,'parallel_buffered',)
# %timeit p2=parallel_argsort(indicopy,'parallel',)
# %timeit p3=parallel_argsort(indicopy,'sort')
# %timeit p4=np.argsort(indicopy)
# 3.18 ms ± 622 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
# 2.62 ms ± 38.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
# 6.38 ms ± 54.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
# 5.13 ms ± 99.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

# df.index.shape
# (891000,)
# %timeit p1=parallel_argsort(indicopy,'parallel_buffered',)
# %timeit p2=parallel_argsort(indicopy,'parallel',)
# %timeit p3=parallel_argsort(indicopy,'sort')
# %timeit p4=np.argsort(indicopy)
# 28.4 ms ± 2.42 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
# 29 ms ± 1.04 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
# 90.9 ms ± 1.1 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
# 73.3 ms ± 910 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

# df.index.shape
# Out[4]: (8910000,)
# %timeit p1=parallel_argsort(indicopy,'parallel_buffered',)
# %timeit p2=parallel_argsort(indicopy,'parallel',)
# %timeit p3=parallel_argsort(indicopy,'sort')
# %timeit p4=np.argsort(indicopy)
# 586 ms ± 24.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
# 604 ms ± 18.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
# 1.45 s ± 20.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
# 1.34 s ± 13.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

# df.index.shape
# Out[4]: (89100000,)
# %timeit p1=parallel_argsort(indicopy,'parallel_buffered',)
# %timeit p2=parallel_argsort(indicopy,'parallel',)
# %timeit p3=parallel_argsort(indicopy,'sort')
# %timeit p4=np.argsort(indicopy)
# 10.1 s ± 97.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
# 10.5 s ± 45.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
# 20.9 s ± 82.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
# 24.5 s ± 70.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cythonparallelargsort-0.10.tar.gz (22.6 kB view details)

Uploaded Source

Built Distribution

cythonparallelargsort-0.10-py3-none-any.whl (22.8 kB view details)

Uploaded Python 3

File details

Details for the file cythonparallelargsort-0.10.tar.gz.

File metadata

  • Download URL: cythonparallelargsort-0.10.tar.gz
  • Upload date:
  • Size: 22.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for cythonparallelargsort-0.10.tar.gz
Algorithm Hash digest
SHA256 7ec263b96e07d2db492c707a845b9ca04030a87463a1efdb4aac45ae56290fd9
MD5 4b2bc200acb33ad31a2aa69828948f2d
BLAKE2b-256 3484567eb4d5fbeb4409aa7e029b334e6109f128837aa62737f2f943853194cd

See more details on using hashes here.

File details

Details for the file cythonparallelargsort-0.10-py3-none-any.whl.

File metadata

File hashes

Hashes for cythonparallelargsort-0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 71ec76f596f4e809d0cf45cc7c8c62af947c6d3abf75f905952e69cdafb323a7
MD5 fdf36142fe6bfc4ccf012bd34485eee0
BLAKE2b-256 bf1d0e587d6a0cd5da64eb06612dcd242a6cee6973e8c06b187c11dde5725c58

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page