Make working with datetimes in Python simpler and more powerful.
Project description
Make working with datetimes in Python simpler and more powerful.
Created to be used in a project, this package is published to github for ease of management and installation across different modules.
Installation
Install from PyPi
pip install cytimes
Install from github
pip install git+https://github.com/AresJef/cyTimes.git
Compatibility
Supports Python 3.10 and above.
Features
cyTimes introduces two classes that simplify and enhance working with datetimes:
Pydt(Pythondatetime.datetime)Pddt(PandasDatetimeIndex)
Both provide similar functionalities:
- Direct drop-in replacements (subclasses) for standard Python
datetimeand PandasDatetimeIndex. - Cython-optimized for high-performance parsing, creation, and calendar manipulation (shifting & replacing).
- Flexible constructors accepting multiple input formats (strings, datetime objects, timestamps, etc.).
- Rich conversion options (ISO strings, ordinals, timestamps, and more).
- Comprehensive manipulation for precise datetime fields adjustments (years, quarters, months, days, time).
- Direct calendar information insights (e.g., days in month, leap years).
- Extended timezone-related capabilities.
- Supports adding or subtracting deltas, and compute delta difference against datetime-like object(s).
Pydt Usage
The Pydt class is drop-in replacement for Python’s native datetime.datetime, with additional functionalities.
Construction
from cytimes import Pydt
import datetime, numpy as np
Pydt(1970, 1, 1, tzinfo="UTC")
>>> 1970-01-01 00:00:00+0000
Pydt.parse("1970 Jan 1 00:00:01 PM")
>>> 1970-01-01 12:00:01
Pydt.now()
>>> 2024-12-06 10:37:25.619593
Pydt.utcnow()
>>> 2024-12-06 09:37:36.743159+0000
Pydt.combine("1970-01-01", "00:00:01")
>>> 1970-01-01 00:00:01
Pydt.fromordinal(1)
>>> 0001-01-01 00:00:00
Pydt.fromseconds(1)
>>> 1970-01-01 00:00:01
Pydt.frommicroseconds(1)
>>> 1970-01-01 00:00:00.000001
Pydt.fromtimestamp(1, datetime.UTC)
>>> 1970-01-01 00:00:01+0000
Pydt.utcfromtimestamp(1)
>>> 1970-01-01 00:00:01+0000
Pydt.fromisoformat("1970-01-01T00:00:01")
>>> 1970-01-01 00:00:01
Pydt.fromisocalendar(1970, 1, 4)
>>> 1970-01-01 00:00:00
Pydt.fromdayofyear(1970, 1)
>>> 1970-01-01 00:00:00
Pydt.fromdate(datetime.date(1970, 1, 1))
>>> 1970-01-01 00:00:00
Pydt.fromdatetime(datetime.datetime(1970, 1, 1))
>>> 1970-01-01 00:00:00
Pydt.fromdatetime64(np.datetime64(1, "s"))
>>> 1970-01-01 00:00:01
Pydt.strptime("00:00:01 1970-01-01", "%H:%M:%S %Y-%m-%d")
>>> 1970-01-01 00:00:01
Conversion
from cytimes import Pydt
dt = Pydt(1970, 1, 1, tzinfo="CET")
dt.ctime()
>>> "Thu Jan 1 00:00:00 1970"
dt.strftime("%Y-%m-%d %H:%M:%S %Z")
>>> "1970-01-01 00:00:00 CET"
dt.isoformat()
>>> "1970-01-01T00:00:00+01:00"
dt.timetuple()
>>> (1970, 1, 1, 0, 0, 0, 3, 1, 0)
dt.toordinal()
>>> 719163
dt.toseconds()
>>> 0.0
dt.tomicroseconds()
>>> 0
dt.timestamp()
>>> -3600.0
dt.date()
>>> 1970-01-01
dt.time()
>>> 00:00:00
dt.timetz()
>>> 00:00:00
Manipulation
from cytimes import Pydt
dt = Pydt(1970, 2, 2, 2, 2, 2, 2, "CET")
# . replace
dt.replace(year=2007, microsecond=1, tzinfo="UTC")
>>> 2007-02-02 02:02:02.000001+0000
# . year
dt.to_curr_year(3, 15)
>>> 1970-03-15 02:02:02.000002+0100
dt.to_prev_year("Feb", 30)
>>> 1969-02-28 02:02:02.000002+0100
dt.to_next_year("十二月", 31)
>>> 1971-12-31 02:02:02.000002+0100
dt.to_year(100, "noviembre", 30)
>>> 2070-11-30 02:02:02.000002+0100
# . quarter
dt.to_curr_quarter(3, 15)
>>> 1970-03-15 02:02:02.000002+0100
dt.to_prev_quarter(3, 15)
>>> 1969-12-15 02:02:02.000002+0100
dt.to_next_quarter(3, 15)
>>> 1970-06-15 02:02:02.000002+0100
dt.to_quarter(100, 3, 15)
>>> 1995-03-15 02:02:02.000002+0100
# . month
dt.to_curr_month(15)
>>> 1970-02-15 02:02:02.000002+0100
dt.to_prev_month(15)
>>> 1970-01-15 02:02:02.000002+0100
dt.to_next_month(15)
>>> 1970-03-15 02:02:02.000002+0100
dt.to_month(100, 15)
>>> 1978-06-15 02:02:02.000002+0200
# . weekday
dt.to_monday()
>>> 1970-02-02 02:02:02.000002+0100
dt.to_sunday()
>>> 1970-02-08 02:02:02.000002+0100
dt.to_curr_weekday(4)
>>> 1970-02-06 02:02:02.000002+0100
dt.to_prev_weekday(4)
>>> 1970-01-30 02:02:02.000002+0100
dt.to_next_weekday(4)
>>> 1970-02-13 02:02:02.000002+0100
dt.to_weekday(100, 4)
>>> 1972-01-07 02:02:02.000002+0100
# . day
dt.to_yesterday()
>>> 1970-02-01 02:02:02.000002+0100
dt.to_tomorrow()
>>> 1970-02-03 02:02:02.000002+0100
dt.to_day(100)
>>> 1970-05-13 02:02:02.000002+0100
# . date&time
dt.to_first_of("Y")
>>> 1970-01-01 02:02:02.000002+0100
dt.to_last_of("Q")
>>> 1970-03-31 02:02:02.000002+0100
dt.to_start_of("M")
>>> 1970-02-01 00:00:00+0100
dt.to_end_of("W")
>>> 1970-02-08 23:59:59.999999+0100
dt.to_first_of("Y").is_first_of("Y")
>>> True
dt.to_last_of("Q").is_last_of("Q")
>>> True
dt.to_start_of("M").is_start_of("M")
>>> True
dt.to_end_of("W").is_end_of("W")
>>> True
# . round / ceil / floor
dt.round("h")
>>> 1970-02-02 02:00:00+0100
dt.ceil("m")
>>> 1970-02-02 02:03:00+0100
dt.floor("s")
>>> 1970-02-02 02:02:02+0100
Calendar Information
from cytimes import Pydt
dt = Pydt(1970, 2, 2, tzinfo="UTC")
# . iso
dt.isocalendar()
>>> {'year': 1970, 'week': 6, 'weekday': 1}
dt.isoyear()
>>> 1970
dt.isoweek()
>>> 6
dt.isoweekday()
>>> 1
# . year
dt.is_leap_year()
>>> False
dt.is_long_year()
>>> True
dt.leap_bt_year(2007)
>>> 9
dt.days_in_year()
>>> 365
dt.days_bf_year()
>>> 719162
dt.days_of_year()
>>> 33
dt.is_year(1970)
>>> True
# . quarter
dt.days_in_quarter()
>>> 90
dt.days_bf_quarter()
>>> 0
dt.days_of_quarter()
>>> 33
dt.is_quarter(1)
>>> True
# . month
dt.days_in_month()
>>> 28
dt.days_bf_month()
>>> 31
dt.days_of_month()
>>> 2
dt.is_month("Feb")
>>> True
dt.month_name("es")
>>> "febrero"
# . weekday
dt.is_weekday("Monday")
>>> True
dt.weekday_name("fr")
>>> "lundi"
# . day
dt.is_day(2)
>>> True
Timezone Operation
from cytimes import Pydt
dt = Pydt(1970, 1, 1, tzinfo="UTC")
dt.is_local()
>>> False
dt.is_utc()
>>> True
dt.is_dst()
>>> False
dt.tzname()
>>> "UTC"
dt.utcoffset()
>>> 0:00:00
dt.utcoffset_seconds()
>>> 0
dt.dst()
>>> None
dt.astimezone("CET")
>>> 1970-01-01 01:00:00+0100
dt.tz_localize(None)
>>> 1970-01-01 00:00:00
dt.tz_convert("CET")
>>> 1970-01-01 01:00:00+0100
dt.tz_switch("CET")
>>> 1970-01-01 01:00:00+0100
Arithmetic
from cytimes import Pydt
dt = Pydt(1970, 1, 1, tzinfo="UTC")
dt.add(years=1, weeks=1, microseconds=1)
>>> 1971-01-08 00:00:00.000001+0000
dt.sub(quarters=1, days=1, seconds=1)
>>> 1969-09-29 23:59:59+0000
dt.diff("2007-01-01 01:01:01+01:00", "s")
>>> -1167609662
Comparison
from cytimes import Pydt
dt = Pydt(1970, 1, 1)
dt.is_past()
>>> True
dt.is_future()
>>> False
Pddt Usage
Pddt extends similar functionalities to Pandas DatetimeIndex, making it behave more like native Python datetime.datetime and Pydt, but for arrays of datetime values. It supports:
- Vectorized parsing, creation, and calendar manipulation (shifting & replacing).
- Provides the same functionalities as
Pydt(see examples above), but for datetime index. Pddtisdatetime64[us]focused. It will try to retain nanosecond resolution when possible, but will automatically downcast to microsecond resolution if the value exceeds the bounds ofdatetime64[ns]. This behavior applies to allPddtmethods.
Handling Nanosecond Overflow
By default, DatetimeIndex uses nanosecond precision 'ns', which cannot represent datetimes outside the range 1677-09-21 to 2262-04-11. Pddt automatically downcasts to microseconds us when encountering out-of-range datetimes, sacrificing nanosecond precision to allow a broader range support.
from cytimes import Pddt
# 1970-01-01: datetime64[ns]
Pddt(["1970-01-01 00:00:00+00:00", "1970-01-02 00:00:00+00:00"])
>>> Pddt(['1970-01-01 00:00:00+00:00', '1970-01-02 00:00:00+00:00'],
dtype='datetime64[ns, UTC]', freq=None)
# 9999-01-01: datetime64[us]
Pddt(["9999-01-01 00:00:00+00:00", "9999-01-02 00:00:00+00:00"])
>>> Pddt(['9999-01-01 00:00:00+00:00', '9999-01-02 00:00:00+00:00'],
dtype='datetime64[us, UTC]', freq=None)
Downcasting mechanism also automacially applies to all methods that modifies the date & time when the resulting values are out of the 'ns' range:
from cytimes import Pddt
# 1970-01-01: datetime64[ns]
pt = Pddt(["1970-01-01 00:00:00+00:00", "1970-01-02 00:00:00+00:00"])
>>> Pddt(['1970-01-01 00:00:00+00:00', '1970-01-02 00:00:00+00:00'],
dtype='datetime64[ns, UTC]', freq=None)
# add 1000 years: datetime64[us]
pt.to_year(1000, "Feb", 30)
>>> Pddt(['2970-02-28 00:00:00+00:00', '2970-02-28 00:00:00+00:00'],
dtype='datetime64[us, UTC]', freq=None)
Acknowledgements
cyTimes is based on several open-source repositories.
cyTimes is built on the following open-source repositories:
-
Class
<'Parser'>and<'Delta'>in this package are the cythonized version of<'dateutil.parser'>and<'dateutil.relativedelta'>. Credit and thanks go to the original authors and contributors of thedateutillibrary.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file cytimes-3.0.3.tar.gz.
File metadata
- Download URL: cytimes-3.0.3.tar.gz
- Upload date:
- Size: 2.8 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
0ff6478f1e8e2224e1a745954376fd1a04a284979988d03f8a7bb35daf9cc00a
|
|
| MD5 |
e91304a19f0f60bd3e575ddafe4f3253
|
|
| BLAKE2b-256 |
4c95bbd214698b0325aab69814b8f25a0f8a67532192199e94e430420a3f70e7
|
File details
Details for the file cytimes-3.0.3-cp313-cp313-win_amd64.whl.
File metadata
- Download URL: cytimes-3.0.3-cp313-cp313-win_amd64.whl
- Upload date:
- Size: 3.9 MB
- Tags: CPython 3.13, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
7464c41b89e86098661c896d2bd23b8f5d8fddbfe389a5e0277b8e1eaae15919
|
|
| MD5 |
a2af3220a04a033b17be9f540be0fe3f
|
|
| BLAKE2b-256 |
ff2a390e5359e70c45de9babd83e9a5313f98522a31771ad4240de066c4c2f58
|
File details
Details for the file cytimes-3.0.3-cp313-cp313-win32.whl.
File metadata
- Download URL: cytimes-3.0.3-cp313-cp313-win32.whl
- Upload date:
- Size: 3.8 MB
- Tags: CPython 3.13, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
82fb709d7bc2194961c3c7609066a3d2d8e9bca8fb9fda488346fefba01db37e
|
|
| MD5 |
44251b3148f41ef2cef4348eb3ea60d6
|
|
| BLAKE2b-256 |
9b515a67d3d33223b1ac9ddee2855858ca8b579d71b62bec78e4d9b99dec430d
|
File details
Details for the file cytimes-3.0.3-cp313-cp313-musllinux_1_2_x86_64.whl.
File metadata
- Download URL: cytimes-3.0.3-cp313-cp313-musllinux_1_2_x86_64.whl
- Upload date:
- Size: 11.2 MB
- Tags: CPython 3.13, musllinux: musl 1.2+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
502ae3b9c2baf01c34a431a5f246c61f1c35d80590865e4177473e6e0e97b20a
|
|
| MD5 |
22def99f35d5ea90a4401119617b0814
|
|
| BLAKE2b-256 |
e5ce253b15cae58fcdbe271440163a38fd350debdfd4ad0c7e137c6c43e57530
|
File details
Details for the file cytimes-3.0.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.
File metadata
- Download URL: cytimes-3.0.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 11.2 MB
- Tags: CPython 3.13, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
f3e9b02a0dad75e8c41cc96865f518f133941f5a74ed53a5612fa7c4d92b8f63
|
|
| MD5 |
0d809a2475f1a2b129256c6dad1938ca
|
|
| BLAKE2b-256 |
3f722ec51125e2001d1495b26fd77f6fdf2d15981b31f005fe9f55e830295347
|
File details
Details for the file cytimes-3.0.3-cp313-cp313-macosx_11_0_arm64.whl.
File metadata
- Download URL: cytimes-3.0.3-cp313-cp313-macosx_11_0_arm64.whl
- Upload date:
- Size: 4.1 MB
- Tags: CPython 3.13, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
7913c60629c73607b1635028799faed7fa2a398f39285895636fd757df535678
|
|
| MD5 |
129dc33a315b492f7448a991eb5aa5fd
|
|
| BLAKE2b-256 |
3ac8d0737c76bbd6cd7328977a1fd9a70aaff43a15edf17d5ea228bf83f62819
|
File details
Details for the file cytimes-3.0.3-cp313-cp313-macosx_10_13_x86_64.whl.
File metadata
- Download URL: cytimes-3.0.3-cp313-cp313-macosx_10_13_x86_64.whl
- Upload date:
- Size: 4.1 MB
- Tags: CPython 3.13, macOS 10.13+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
7508e9aea4ddcacd3fde41bce7bf5cdc8a972ca758251422d5858ffbc12f817d
|
|
| MD5 |
f01c48b0546c01e1f8f489c1b756c41f
|
|
| BLAKE2b-256 |
97ed93d412e508c1b4e770b14226d8f67951d5cd8749877e25e7033c2e61f780
|
File details
Details for the file cytimes-3.0.3-cp313-cp313-macosx_10_13_universal2.whl.
File metadata
- Download URL: cytimes-3.0.3-cp313-cp313-macosx_10_13_universal2.whl
- Upload date:
- Size: 5.3 MB
- Tags: CPython 3.13, macOS 10.13+ universal2 (ARM64, x86-64)
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
cef0beb2d49bb3c9555d5f6c68faf3b89586e03c14513892f3b77a8b6f640f06
|
|
| MD5 |
0a3db56972a7f81f5a16473bbb440e0d
|
|
| BLAKE2b-256 |
b3ea18254b16aef348853f21051a1aede7fad7bfd166df06707ec839c3c7780e
|
File details
Details for the file cytimes-3.0.3-cp312-cp312-win_amd64.whl.
File metadata
- Download URL: cytimes-3.0.3-cp312-cp312-win_amd64.whl
- Upload date:
- Size: 3.9 MB
- Tags: CPython 3.12, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
e1b1b5a866d233b7c991ac544d4660bb3d4bcaa197cb4e30531d00404e6d06b2
|
|
| MD5 |
52094c759ff5154ac685143633246789
|
|
| BLAKE2b-256 |
1e20bab3470c5cb1efa72176e06e8d102e5211adb76a5f16a3a58601a315957d
|
File details
Details for the file cytimes-3.0.3-cp312-cp312-win32.whl.
File metadata
- Download URL: cytimes-3.0.3-cp312-cp312-win32.whl
- Upload date:
- Size: 3.8 MB
- Tags: CPython 3.12, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
eedc8ec601896a4054060e669eab7564f742b1f0ee2030bfca29a16bfd8d8dbd
|
|
| MD5 |
4e54636cd9f93d7e8120b0c3ebb0441c
|
|
| BLAKE2b-256 |
dc364f74ec0e732701f8cfce64fcc53bb2042af771643b947572cb1c15d3bf7b
|
File details
Details for the file cytimes-3.0.3-cp312-cp312-musllinux_1_2_x86_64.whl.
File metadata
- Download URL: cytimes-3.0.3-cp312-cp312-musllinux_1_2_x86_64.whl
- Upload date:
- Size: 11.2 MB
- Tags: CPython 3.12, musllinux: musl 1.2+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
e8140d4b5448e70965d7845b84ea37cd0775f7d7729b0cde9a215141febf2ea0
|
|
| MD5 |
1f872c491bc44edfa513e8766d923077
|
|
| BLAKE2b-256 |
3f844ed7ecef270a974db17c9221a8e1af9379a671bf6d723cca56e7592fd825
|
File details
Details for the file cytimes-3.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.
File metadata
- Download URL: cytimes-3.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 11.2 MB
- Tags: CPython 3.12, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
5d344fbb37535fad79c6fb2c404c6e329e80cf0c686f4d265ad20a479826657e
|
|
| MD5 |
55d20e4c0b8eca3d7f34cb083b0b671a
|
|
| BLAKE2b-256 |
e110309bd19db4259ade18cd9e16e46d959614fef0f83cb186fb0e7e49f9e8ae
|
File details
Details for the file cytimes-3.0.3-cp312-cp312-macosx_11_0_arm64.whl.
File metadata
- Download URL: cytimes-3.0.3-cp312-cp312-macosx_11_0_arm64.whl
- Upload date:
- Size: 4.1 MB
- Tags: CPython 3.12, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
21a4eb4076b90b4ab9e4cef4109b1c98776b0b68b7a035393cf6f31089f945ce
|
|
| MD5 |
28b22f264569250f9d4e77bc20048fd7
|
|
| BLAKE2b-256 |
5e6eb476dcf122da4cfbb29c6e6c19df7f7a02070e8c691d99ae210e8af27961
|
File details
Details for the file cytimes-3.0.3-cp312-cp312-macosx_10_9_x86_64.whl.
File metadata
- Download URL: cytimes-3.0.3-cp312-cp312-macosx_10_9_x86_64.whl
- Upload date:
- Size: 4.1 MB
- Tags: CPython 3.12, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
1e06e9b48924723f8134e291d6f634166f478a662b0121d924b35d210233a0ea
|
|
| MD5 |
29aefc3dab34df2668d4d9104d13a4bc
|
|
| BLAKE2b-256 |
9551d75304db4a316a1880e0db6ec71cec7527888238a7615594d152c371418b
|
File details
Details for the file cytimes-3.0.3-cp312-cp312-macosx_10_9_universal2.whl.
File metadata
- Download URL: cytimes-3.0.3-cp312-cp312-macosx_10_9_universal2.whl
- Upload date:
- Size: 5.3 MB
- Tags: CPython 3.12, macOS 10.9+ universal2 (ARM64, x86-64)
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
5198704340eb3c24a787a0e3016425215ade94e94719870f2df78bba08903fb8
|
|
| MD5 |
38b77d7da7ee78452ac6626b9fa26ccb
|
|
| BLAKE2b-256 |
b5d933f3109a0040827cc6738e263c97824185c4ad7d5d7eff282f06ad8843dd
|
File details
Details for the file cytimes-3.0.3-cp311-cp311-win_amd64.whl.
File metadata
- Download URL: cytimes-3.0.3-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 3.9 MB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
cf3e514aa00b3be393fec3ba358e316451a54966bef1ad9d3748b714e5f3e92a
|
|
| MD5 |
0d9cc34ea364c5b5ada681266ccc8a22
|
|
| BLAKE2b-256 |
2ee8b31b63d7f577488c5a3e2e5846fbea228b53c4ad52e6b1c5eca3951a0dcd
|
File details
Details for the file cytimes-3.0.3-cp311-cp311-win32.whl.
File metadata
- Download URL: cytimes-3.0.3-cp311-cp311-win32.whl
- Upload date:
- Size: 3.8 MB
- Tags: CPython 3.11, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
db66e5d0161f88fd6f012063cdb168d4bb0e27a10e2034409a7a93e3f04c3709
|
|
| MD5 |
a41afa3106937dadf5ae277ed421d276
|
|
| BLAKE2b-256 |
56af27586109eac2e2ed2443aade87e9fa518a8aa48bf4c17d488eaf74c5683a
|
File details
Details for the file cytimes-3.0.3-cp311-cp311-musllinux_1_2_x86_64.whl.
File metadata
- Download URL: cytimes-3.0.3-cp311-cp311-musllinux_1_2_x86_64.whl
- Upload date:
- Size: 11.6 MB
- Tags: CPython 3.11, musllinux: musl 1.2+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
1cfdfb977e305c0a7d95ade4180ecd028446f8d4d8b83f44ccd2b08ffd2c374a
|
|
| MD5 |
cf59bd83c337690de64c3ac65e2ae59b
|
|
| BLAKE2b-256 |
cd61150d86f2f73b2e9cc1adcefc34c31552a61da3cdb9a7c086520372b594fa
|
File details
Details for the file cytimes-3.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.
File metadata
- Download URL: cytimes-3.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 11.6 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
d1b0fbabbd524f1deb06aa2b7652a0da3da53925938dfa86bc7a28db7fd07b98
|
|
| MD5 |
dc239c5ba73ee8c18530433dca72b0ca
|
|
| BLAKE2b-256 |
b604a5683e519d7698c612b071dfb895f463bed1c58564022fbace9d07838a4b
|
File details
Details for the file cytimes-3.0.3-cp311-cp311-macosx_11_0_arm64.whl.
File metadata
- Download URL: cytimes-3.0.3-cp311-cp311-macosx_11_0_arm64.whl
- Upload date:
- Size: 4.1 MB
- Tags: CPython 3.11, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
20c219d0bed866c574ca206c940de59cf4ab64fae242e66a20d172dbedf555e7
|
|
| MD5 |
46161827fbd3e489b6fbda2ee532a2a0
|
|
| BLAKE2b-256 |
298463b623a266e6ed3e8b0659c0075288f3704c724cd8dbb22347594d7ac837
|
File details
Details for the file cytimes-3.0.3-cp311-cp311-macosx_10_9_x86_64.whl.
File metadata
- Download URL: cytimes-3.0.3-cp311-cp311-macosx_10_9_x86_64.whl
- Upload date:
- Size: 4.1 MB
- Tags: CPython 3.11, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
5fef302def40b4555e7517a02cf20d2065e682a70c15e6d9fb554cdee3cc684b
|
|
| MD5 |
a8a8dd8425a0022ca91aa37628bbc5bb
|
|
| BLAKE2b-256 |
58e19090dce1609b1cc4ad7785900e0bee26b48d50adea313ed51a76248f6190
|
File details
Details for the file cytimes-3.0.3-cp311-cp311-macosx_10_9_universal2.whl.
File metadata
- Download URL: cytimes-3.0.3-cp311-cp311-macosx_10_9_universal2.whl
- Upload date:
- Size: 5.3 MB
- Tags: CPython 3.11, macOS 10.9+ universal2 (ARM64, x86-64)
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
75609be4ccbe3a430b07b00ffbe73a10d50dacb913bfd2d2a21d5e318d0e0e5f
|
|
| MD5 |
1f9fc695d382435d465e8778d62863d9
|
|
| BLAKE2b-256 |
87435d84a1cee9f0d21756c89671115dbacffeff9bb153466a7ef3bcba2a6e70
|
File details
Details for the file cytimes-3.0.3-cp310-cp310-win_amd64.whl.
File metadata
- Download URL: cytimes-3.0.3-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 3.9 MB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
d17a0b83644751f1652bfef35d70a897cd7f653210ef491fd05f50537827865d
|
|
| MD5 |
6b1bb4277fe6fb49914149076b8a578a
|
|
| BLAKE2b-256 |
a7eacac6bc43d369b9192d0637a8d6316166544281e35799b3ebc51f31ce55d9
|
File details
Details for the file cytimes-3.0.3-cp310-cp310-win32.whl.
File metadata
- Download URL: cytimes-3.0.3-cp310-cp310-win32.whl
- Upload date:
- Size: 3.8 MB
- Tags: CPython 3.10, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
84f6cc1ba34dd720a66742b12d6e9353d523ad774042670ebb3b4abd86b47fb7
|
|
| MD5 |
a30167a069415e0331e824a428fff597
|
|
| BLAKE2b-256 |
49c9b2cc51c7cc0bc6738bc924879642955e6bd09a3e8c6efc3fa8261f7ed916
|
File details
Details for the file cytimes-3.0.3-cp310-cp310-musllinux_1_2_x86_64.whl.
File metadata
- Download URL: cytimes-3.0.3-cp310-cp310-musllinux_1_2_x86_64.whl
- Upload date:
- Size: 11.2 MB
- Tags: CPython 3.10, musllinux: musl 1.2+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
b90aa4342ad31c60e8ee664c0c553e2589918a85c523bf3145e2e5714d5920ce
|
|
| MD5 |
c54ad4b76397cbc5185a6780b69562ef
|
|
| BLAKE2b-256 |
a6b64db1cb859c29d72df6b4376591ed821f8d97f9e2cc5cf25e859c449ac0c0
|
File details
Details for the file cytimes-3.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.
File metadata
- Download URL: cytimes-3.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 11.2 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
a5c338e6646246fe6555bb75bd0721576783027842b69ec618477bdc9cd5a077
|
|
| MD5 |
b14051ade3e215a593f7a9b628759a88
|
|
| BLAKE2b-256 |
019b016bdf72dda2fccae9a75451ab2e7e3bc920efb0dfa882d593e10856807c
|
File details
Details for the file cytimes-3.0.3-cp310-cp310-macosx_11_0_arm64.whl.
File metadata
- Download URL: cytimes-3.0.3-cp310-cp310-macosx_11_0_arm64.whl
- Upload date:
- Size: 4.1 MB
- Tags: CPython 3.10, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
89c966081b9755d6097b70eeca9fab28980bf34fb7c4d7f5a00a4db7981d0261
|
|
| MD5 |
f20f93b7f7cd96da6204e4fabbb6b256
|
|
| BLAKE2b-256 |
a44f3f646468d23337dd7f3604774921aee47d3a001aef7b51458e3f7f7d4454
|
File details
Details for the file cytimes-3.0.3-cp310-cp310-macosx_10_9_x86_64.whl.
File metadata
- Download URL: cytimes-3.0.3-cp310-cp310-macosx_10_9_x86_64.whl
- Upload date:
- Size: 4.1 MB
- Tags: CPython 3.10, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
7ef4bf09e04f6b880906546b1c3701500cf833a5bc92a86e24f8eb7506c05eef
|
|
| MD5 |
bbd37388e151d4f5b983e10976cb43a8
|
|
| BLAKE2b-256 |
872cb8e0714814204d14afba1e39eabce2f72d014dbb9be6baf3f4f292bbe017
|
File details
Details for the file cytimes-3.0.3-cp310-cp310-macosx_10_9_universal2.whl.
File metadata
- Download URL: cytimes-3.0.3-cp310-cp310-macosx_10_9_universal2.whl
- Upload date:
- Size: 5.3 MB
- Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
367a622c70d9901b326549f0d70bb1424b294ebc80ceabca1a1dd1652975c346
|
|
| MD5 |
4b02a2dea08d4794701fa1c94fa87337
|
|
| BLAKE2b-256 |
a02e73c0e74e36c5707d1e78aed0e1d6fd2ee27162e4182c16c5e1be30923cbd
|