Skip to main content

No project description provided

Project description

ai-utils

Installation

pip install cyvidia-ai-utils

Cross validation

Huggingface Trainer API

from cyvidia_ai_utils import TransformerCrossValidationModel, cross_validate, EvaluationResult
from transformers import AutoTokenizer, AutoModelForSequenceClassification,TrainingArguments
from datasets import load_dataset, Dataset
from transformers import DataCollatorWithPadding,Trainer

folds = load_dataset("dipesh/Intent-Classification-small",split=[f"train[{k}%:{k+10}%]" for k in range(0, 100, 10)])
assert(isinstance(folds, list))

def create_model():
    model = AutoModelForSequenceClassification.from_pretrained("prajjwal1/bert-tiny", num_labels=21)
    tokenizer= AutoTokenizer.from_pretrained("prajjwal1/bert-tiny")

    return TransformerCrossValidationModel(
        model= model,
        tokenizer= tokenizer,
        training_args= TrainingArguments(
            output_dir=f'tests/test_models/{uuid.uuid4()}',
            learning_rate=2e-5,
            per_device_train_batch_size=16,
            per_device_eval_batch_size=16,
            num_train_epochs=0.001,
            weight_decay=0.01,
            evaluation_strategy="epoch",
            save_strategy="epoch",
            load_best_model_at_end=True,
        )
    )

# folds can either be a list of Dataset's or a dictionary of label to Dataset
folds_dict= {f"train[{k}%:{k+10}%]": fold for k, fold in enumerate(folds)}
results=cross_validate(create_model, folds_dict, target_id_column="label", input_text_column="text")



aggragated_result= EvaluationResult.aggregate(list(results.values()))

Custom Trainer

from cyvidia_ai_utils import CrossValidationModel

class MyCustomCrossValidationModel(CrossValidationModel):
    def get_label_for_id(self, id: int)-> str:
        # Implement

    def train(self, train_ds, val_ds)-> CrossValidationModel:
        # Implement

    def predict_values(self, values)-> Dict[str,Any]:
        # Implement


def create_model():
    return MyCustomCrossValidationModel()

results= cross_validate(create_model, folds, target_id_column="label", input_text_column="text")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cyvidia_ai_utils-0.6.0.tar.gz (3.8 kB view hashes)

Uploaded Source

Built Distribution

cyvidia_ai_utils-0.6.0-py3-none-any.whl (5.8 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page