Skip to main content

Tools to simplify reading CZI (Carl Zeiss Image) meta-and pixel data in Python

Project description

czitools

PyPI PyPI - Downloads License Python Version Development Status

This repository provides a collection of tools to simplify reading CZI (Carl Zeiss Image) pixel and metadata in Python. In addition it also contains other useful utilities to visualize CZI images inside Napari.

Reading the metadata

Please check use_pylibczirw_metadata_class.py for some examples.

# get the metadata at once as one big class
mdata_sel = czimd.CziMetadata(filepath)

# get only specific metadata
czi_dimensions = czimd.CziDimensions(filepath)
print("SizeS: ", czi_dimensions.SizeS)
print("SizeT: ", czi_dimensions.SizeT)
print("SizeZ: ", czi_dimensions.SizeZ)
print("SizeC: ", czi_dimensions.SizeC)
print("SizeY: ", czi_dimensions.SizeY)
print("SizeX: ", czi_dimensions.SizeX)

# and get more info about various aspects of the CZI
czi_scaling = czimd.CziScaling(filepath)
czi_channels = czimd.CziChannelInfo(filepath)
czi_bbox = czimd.CziBoundingBox(filepath)
czi_info = czimd.CziInfo(filepath)
czi_objectives = czimd.CziObjectives(filepath)
czi_detectors = czimd.CziDetector(filepath)
czi_microscope = czimd.CziMicroscope(filepath)
czi_sample = czimd.CziSampleInfo(filepath)

Reading CZI pixeldata

While the pylibCZIrw is focussing on reading individual planes it is also helpful to read CZI pixel data as a STZCYX(A) stack. Please check use_pylibczirw_md_read.py for some examples.

# return a array with dimension order STZCYX(A)
mdarray, dimstring = pylibczirw_tools.read_mdarray(filepath, remove_Adim=True)

# remove A dimension do display the array inside Napari
dim_order, dim_index, dim_valid = czimd.CziMetadata.get_dimorder(dimstring)

# show array inside napari viewer
viewer = napari.Viewer()
layers = napari_tools.show(viewer, mdarray, mdata,
                           dim_order=dim_order,
                           blending="additive",
                           contrast='napari_auto',
                           gamma=0.85,
                           add_mdtable=True,
                           name_sliders=True)

napari.run()

5D CZI inside Napari

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

czitools-0.0.2.tar.gz (36.9 MB view details)

Uploaded Source

Built Distribution

czitools-0.0.2-py3-none-any.whl (21.5 kB view details)

Uploaded Python 3

File details

Details for the file czitools-0.0.2.tar.gz.

File metadata

  • Download URL: czitools-0.0.2.tar.gz
  • Upload date:
  • Size: 36.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for czitools-0.0.2.tar.gz
Algorithm Hash digest
SHA256 23de4d29f57bbc6196a6180b30519742107841c6411305e6420954c371ccab08
MD5 b6d150bb6bd47ec29d9f4083aef73505
BLAKE2b-256 44e7599aee7a3cba5470a822aa8aaabfb789dbc83fd4e49db7ad4eb5bdd5d0d1

See more details on using hashes here.

File details

Details for the file czitools-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: czitools-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 21.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for czitools-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 9e0a771b6774e543cdcdbeffe5a4142256e399790a009a8896ba9f587d59018c
MD5 f89122226267db9ee05531e402742437
BLAKE2b-256 e830897ea416cab2d10dacabd8338a48463125eb47bc682b50ff89bdc213bfd1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page