ESRNN implementation for Data Driven Discovery(D3M)
Project description
d3m_esrnn
Hybrid ES-RNN models for time series forecasting
Python implementation of ESRNN model (described in https://eng.uber.com/m4-forecasting-competition/ ).
Run example
A full example available in example.ipynb
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
d3m-esrnn-0.1.1.tar.gz
(22.1 kB
view details)
Built Distribution
d3m_esrnn-0.1.1-py3-none-any.whl
(28.4 kB
view details)
File details
Details for the file d3m-esrnn-0.1.1.tar.gz
.
File metadata
- Download URL: d3m-esrnn-0.1.1.tar.gz
- Upload date:
- Size: 22.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.49.0 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1bc13ab39f6aaab736570e738998749d0985be8580d637f3cc47b23270259ad6 |
|
MD5 | 67569756856eed9fe574fe71865e3158 |
|
BLAKE2b-256 | 9e797c6ad60dc851778f6473592b43c916956a711bb70e4f0ac83601179ed6e9 |
File details
Details for the file d3m_esrnn-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: d3m_esrnn-0.1.1-py3-none-any.whl
- Upload date:
- Size: 28.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.49.0 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b616e4e9b450d96ebf99b87de80ae6d05f332389b8a180d3cf03f57a5ae6d5c9 |
|
MD5 | dea4cff9e3335a738bcda959f0009cb1 |
|
BLAKE2b-256 | c2f2b991a4caf1911f96b92a738051ef3348ffa42544471b21e48e72652bacf9 |