Skip to main content

Python Boilerplate contains all the boilerplate you need to create a Python package.

Project description

https://github.com/kforti/D4Data/blob/master/logo.png

D4Data

https://img.shields.io/pypi/v/d4data.svg

Data Engineered with python

Proof of concept project for python data engineering. Envisioned use cases:
  • Data access and sharing with data defined as code.

  • Data catologing and discovery.

  • Data transfer and partitioning for distributed computing.

  • Go from remote data sources to model training with simple and expressive python.

Installation

pip install d4data

Example API:

Define data as code

from d4data.storage_clients import FTPStorageClient
from d4data.sources import CSVDataSource

class NIHChromosomeSNPS38(CSVDataSource):
    def __init__(self, chromosome, output_path):
        # define data that is specific to your data source
        self.chromosome = chromosome

        # give your data source a name, file name, local paths to save to and uri
        self.name = "NIH_Chromose_{}_SNPS38".format(self.chromosome)
        self.file_name = "bed_chr_{}.bed.gz".format(self.chromosome)
        self.uri = "https://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606_b151_GRCh38p7/BED/" + self.file_name
        self.local_paths = [os.path.join(output_path, self.file_name)]

        # assign a storage client
        self.client = FTPStorageClient()
  • Download data programmatically

data = NIHChromosomeSNPS38(chromosome=1, local_path="./datasources")

# calls client.download(uri=self.uri)
data.to_disk()
  • Process data

dataset = data.to_dataset()
for i in range(len(dataset)):
    some_func(dataset[i])
  • Compose DataSources dynamically with a DataStrategy:

from d4data.storage_clients import HTTPStorageClient
from d4data.core import DataStrategy, CompositeDataSource

# Define the DataSource
class HaploRegSource(CSVDataSource):
    def __init__(self, population, local_path):
        self.name = "LD_{}".format(population.upper())
        self.file_name = self.name + ".tsv.gz"
        self.uri = "https://pubs.broadinstitute.org/mammals/haploreg/data/" + self.file_name
        self.local_paths = [os.path.join(local_path, self.file_name)]

        self.client = HTTPStorageClient()

# Define the DataStrategy
# Data Strategies contain logic for building data sources from some higher level data about the data, e.g list of s3 urls.
# Data Strategies can also contain a partition strategy where logic for partitioning data sources can be implemented- you may want to partition based on compute resources available.
class HaploRegStrategy(DataStrategy):
    def __init__(self, populations, local_path):
        self.populations = populations
        self.local_path = local_path

        self._sources = {
            "haplo_reg": HaploRegSource
        }

    def create_sources(self):
        comp_source = CompositeDataSource()
        source = self._sources["haplo_reg"]
        for population in self.populations:
            ds = source(population, self.local_path)
            comp_source.add(ds)
        return comp_source

pops = ["afr", "eur", "amr]
haplo_strategy = HaploRegStrategy(pops, local_path="./data_sources")
comp_source = haplo_strategy.create_sources()
for source in comp_source:
    # Download sources to in-memory file system
    d = s.to_memfs()
  • Prefect Integration: TODO

  • Pytorch Integration: TODO

Features

  • TODO

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

d4data-0.1.3.tar.gz (11.3 kB view details)

Uploaded Source

Built Distribution

d4data-0.1.3-py2.py3-none-any.whl (8.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file d4data-0.1.3.tar.gz.

File metadata

  • Download URL: d4data-0.1.3.tar.gz
  • Upload date:
  • Size: 11.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for d4data-0.1.3.tar.gz
Algorithm Hash digest
SHA256 09d7edb7119aef43ae2bfc4bf078978bd916afcb9886eaee6e6ddff0140ff995
MD5 cf999d8e3fb044c577adb99f460571da
BLAKE2b-256 44be272b0f4adfd56bd56cec82617808c392091da77c3a200f185bfd8462ef8d

See more details on using hashes here.

File details

Details for the file d4data-0.1.3-py2.py3-none-any.whl.

File metadata

  • Download URL: d4data-0.1.3-py2.py3-none-any.whl
  • Upload date:
  • Size: 8.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for d4data-0.1.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 c0b2702032b0deff94d180ed9f54b65e2e93bb969c1cbbccfe28e9c122fda812
MD5 c5b15c965e150ab3eb2e13c18411bd35
BLAKE2b-256 e6af883e58ff9ba8e8c849e35df4f4ff20e15053f99a2b26b299adf9bcf01eca

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page