Compact logger for Python 3.10+
Project description
Logger Class Documentation
Overview
The Logger
class in this module is designed for advanced logging capabilities. It offers various customization options, including formatting, colors, and data representation. The class is highly versatile, allowing users to tailor their logging experience according to specific needs.
Constructor
__init__(self, ...)
Initializes a new instance of the Logger
class with various configuration options.
Parameters:
name
(str, optional): Name of the logger.line_length
(int, optional): Maximum length of a log line.time_format
(str, optional): Format for timestamps in logs.time_local
(bool, optional): If True, use local time; if False, use UTC.compact
(bool, optional): If True, metadata is printed compactly; if False, with spaces.colored
(bool, optional): If True, logs are colored; if False, no colors are used.style
(dict, optional): Style configuration for the logger.show_log_number
(bool, optional): If True, displays the log number.show_log_levels
(bool, optional): If True, displays the log levels.hide_log_level
(list, optional): List of log levels to hide.show_time
(bool, optional): If True, displays the timestamp.show_logger_name
(bool, optional): If True, displays the logger's name.show_source_name
(bool, optional): If True, displays the source name.show_file_name
(bool, optional): If True, displays the file name.show_line_number
(bool, optional): If True, displays the line number.wrap_log_message
(bool, optional): If True, wraps the log message.data_max_size
(int, optional): Maximum size of data to be logged.max_logs_to_store
(int, optional): Maximum number of logs to store in memory.
Methods
log(self, ...)
Logs a message with various customization options.
Parameters:
message
(str, optional): The message to log.data
(Any, optional): Additional data to log.level
(str, optional): The log level.exc
(Exception, optional): Exception to log.source_name
(str, optional): Source name of the log.color
(str, optional): Color of the log message.display
(bool, optional): If True, displays the log message.caller_frame
(optional): The frame of the caller.divider
(str, optional): Divider string for the log.colorless
(bool, optional): If True, logs without colors.show_metadata
(bool, optional): If True, shows metadata.metadata_color_override
(str, optional): Overrides the color of metadata.
info(self, ...)
, debug(self, ...)
, warning(self, ...)
, error(self, ...)
, critical(self, ...)
Methods for logging messages at specific log levels (INFO, DEBUG, WARNING, ERROR, CRITICAL). Parameters are similar to log
.
warn(self, ...)
, crit(self, ...)
Aliases for warning
and critical
methods, respectively.
json(self, data:Any, pretty=False, color:str=None, msg:str="")
Logs data in JSON format.
format_record(self, record:Record)
Formats a log record.
print_current_style(self)
Prints the current style configuration of the logger.
data_to_str(self, data:Any)
Converts data to a string representation.
colorize_data(self, ...)
Colorizes the data string based on specified schema.
Usage Example
For fast usage:
from dlog import *
l = Logger()
l("Hello World!", {"a": "b"}, c=GRN)
from my_logging_module import Logger
# Initialize logger with default settings
logger = Logger()
# Log an informational message
logger.info("This is an informational message")
# Log a debug message with additional data
logger.debug("Debug message", data={"key": "value"})
Note
For detailed styling options, refer to the style
parameter in the constructor documentation. The style dictionary provides extensive customization for log appearance, data representation, and coloring schema.
Basic Setup
Before diving into complex scenarios, let's start with a basic setup:
from dlog import Logger
# Basic logger with default settings
basic_logger = Logger()
basic_logger.info("This is a basic log message.")
Customizing Logger Appearance
Now, let's customize the appearance of our logger:
# Customized logger
custom_logger = Logger(line_length=120, time_format="local-%H:%M:%S", compact=True)
custom_logger.info("Customized logger message.")
Logging with Different Levels
We can log messages at different levels, such as DEBUG, INFO, WARNING, ERROR, and CRITICAL:
custom_logger.debug("This is a debug message.")
custom_logger.warning("Warning! Check this out.")
custom_logger.error("Error occurred in the system.")
custom_logger.critical("Critical issue encountered!")
Logging with Data
Log complex data structures, like dictionaries and lists, which is helpful for debugging:
complex_data = {"key1": "value1", "key2": [1, 2, 3], "key3": {"nested_key": "nested_value"}}
custom_logger.info("Logging complex data", data=complex_data)
Exception Handling
Capture and log exceptions, which is crucial for debugging errors in your code:
try:
1 / 0
except Exception as e:
custom_logger.error("An exception occurred", exc=e)
Logging with Colors and Dividers
Enhance readability with colors and dividers:
custom_logger.info("Colored log message", color=Logger.GRN, divider=Logger.GRN)
custom_logger.error("Error with red divider", color=Logger.RED, divider=Logger.RED)
Compact and Cleaner Modes
Switch between compact and verbose modes for different logging needs:
# Compact mode
compact_logger = Logger(compact=True)
compact_logger.info("Compact mode log.")
# Cleaner mode
verbose_logger = Logger(compact=False)
verbose_logger.info("Verbose mode log.")
Using JSON Format for Data
Log data in JSON format for easier parsing and readability:
json_data = {"name": "Alice", "age": 30, "city": "Wonderland"}
custom_logger.json(json_data, msg="User details in JSON:")
Customizing Metadata Display
You can choose what metadata to display in your logs, such as log number, time, and source file name:
metadata_logger = Logger(show_log_number=False, show_time=False, show_file_name=False)
metadata_logger.info("Log with custom metadata.")
Using Different Styles
Experiment with different styles for various logging scenarios:
# Logger with a different style
style_logger = Logger(style=Logger.STYLE_0)
style_logger.info("Log message with a different style.")
Logging Large Data Sets
Handle and log large data sets by customizing data representation:
large_data = [i for i in range(1000)]
custom_logger.debug("Logging large data set", data=large_data)
Each of these examples showcases the flexibility of the Logger
class from the dlog
module. You can mix and match these features to suit your specific logging needs, whether for simple debugging or complex system monitoring.
Shortcuts in the Logger
class provide a quicker and more concise way to log messages at different levels. Let's incorporate these shortcuts into our examples to demonstrate their convenience:
Using the Logger Shortcut for INFO Level
The logger()
method is a shortcut for logging at the INFO level:
from dlog import Logger
# Initialize the logger
shortcut_logger = Logger()
# Shortcut for logging an INFO message
shortcut_logger("This is an INFO level message using the logger() shortcut.")
Shortcut for CRITICAL Level with crit()
Similarly, crit()
is a shortcut for logging at the CRITICAL level:
# Logging a CRITICAL message using the crit() shortcut
shortcut_logger.crit("Critical issue logged using crit() shortcut.")
Other Level Shortcuts
For other log levels, corresponding methods like debug()
, warning()
, error()
, and critical()
can be used directly:
# Logging messages at various levels using direct methods
shortcut_logger.debug("This is a DEBUG level message.")
shortcut_logger.warning("This is a WARNING level message.")
shortcut_logger.error("This is an ERROR level message.")
shortcut_logger.critical("This is a CRITICAL level message using critical().")
Combining Shortcuts with Other Features
These shortcuts can be combined with other features like custom data, colors, and dividers:
# Using shortcut with custom data and color
data = {"key": "value", "number": 123}
shortcut_logger("Logging with data and color", data, color=Logger.YEL)
# Using crit() with a divider
shortcut_logger.crit("Critical message with a divider", divider=Logger.RED)
In summary, these shortcuts (logger()
, crit()
, etc.) provide a quick and effective way to log messages, enhancing the efficiency and readability of your code, especially in complex logging scenarios.
README by GPT-4 based on logger.py
. May be inaccurate or incomplete.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file dLogpy-0.0.4.tar.gz
.
File metadata
- Download URL: dLogpy-0.0.4.tar.gz
- Upload date:
- Size: 14.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.12.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ee2edc21675c48c700ce4f6c1c34574b51a510e81311d3d790957517c1084e08 |
|
MD5 | 2b34ed71722f72f708f17db169edbe15 |
|
BLAKE2b-256 | 1d0ad2af9d09758ef3a4e7488d1ad346825b63489ca1aab5595fced7def5266c |
File details
Details for the file dLogpy-0.0.4-py3-none-any.whl
.
File metadata
- Download URL: dLogpy-0.0.4-py3-none-any.whl
- Upload date:
- Size: 15.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.12.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7a7d6a8f31801d2751b62fa454e114f7a4f679f88b278c89f0205fd3abb6a9e0 |
|
MD5 | 7ca85ca221486a38166e6c7d1eb31ea8 |
|
BLAKE2b-256 | 1011b835c279d95f7a478023642342e60bfac78c692058e5d51c8a72db3d3cc0 |