DadmaTools is a Persian NLP toolkit
Project description
DadmaTools: A Python NLP Library for Persian
Named Entity Recognition | Part of Speech Tagging | Dependency Parsing
Constituency Parsing | Chunking
Tokenizer | Lemmatizer
DadmaTools
DadmaTools is a repository for Natural Language Processing resources for the Persian Language. The aim is to make it easier and more applicable to practitioners in the industry to use Persian NLP, and hence this project is licensed to allow commercial use. The project features code examples on how to use the models in popular NLP frameworks such as spaCy and Transformers, as well as Deep Learning frameworks such as PyTorch. Furthermore, DadmaTools support common Persian embedding and Persian datasets. for more details about how to use this tool read the instruction below.
NLP Models
Natural Language Processing is an active area of research, and it consists of many different tasks. The DadmaTools repository provides an overview of Persian models for some of the most basic NLP tasks (and is continuously evolving).
Here is the list of NLP tasks we currently cover in the repository. These NLP tasks are defined as pipelines. Therefore, a pipeline list must be created and passed through the model. This will allow the user to choose the only task needed without loading others. Each task has its abbreviation as follows:
- Named Entity Recognition:
ner
- Part of speech tagging:
pos
- Dependency parsing:
dep
- Constituency parsing:
cons
- Chunking:
chunk
- Lemmatizing:
lem
- Tokenizing:
tok
- Normalizing
Note that the normalizer can be used outside of the pipeline as there are several configs (the default config is in the pipeline with the name of def-norm). Note that if no pipeline is passed to the model, the tokenizer will be loaded as default.
Use Case
Normalizer
cleaning text and unify characters.
Note: None means no action!
from dadmatools.models.normalizer import Normalizer
normalizer = Normalizer(
full_cleaning=False,
unify_chars=True,
refine_punc_spacing=True,
remove_extra_space=True,
remove_puncs=False,
remove_html=False,
remove_stop_word=False,
replace_email_with="<EMAIL>",
replace_number_with=None,
replace_url_with="",
replace_mobile_number_with=None,
replace_emoji_with=None,
replace_home_number_with=None
)
text = """
<p>
دادماتولز اولین نسخش سال ۱۴۰۰ منتشر شده.
امیدواریم که این تولز بتونه کار با متن رو براتون شیرینتر و راحتتر کنه
لطفا با ایمیل dadmatools@dadmatech.ir با ما در ارتباط باشید
آدرس گیتهاب هم که خب معرف حضور مبارک هست:
https://github.com/Dadmatech/DadmaTools
</p>
"""
normalized_text = normalizer.normalize(text)
#<p> دادماتولز اولین نسخش سال 1400 منتشر شده. امیدواریم که این تولز بتونه کار با متن رو براتون شیرینتر و راحتتر کنه لطفا با ایمیل <EMAIL> با ما در ارتباط باشید آدرس گیتهاب هم که خب معرف حضور مبارک هست: </p>
#full cleaning
normalizer = Normalizer(full_cleaning=True)
normalized_text = normalizer.normalize(text)
#دادماتولز نسخش سال منتشر تولز بتونه کار متن براتون شیرینتر راحتتر کنه ایمیل ارتباط آدرس گیتهاب معرف حضور مبارک
Pipeline - Tokenizer, Lemmatizer, POS Tagger, Dependancy Parser, Constituency Parser
import dadmatools.pipeline.language as language
# here lemmatizer and pos tagger will be loaded
# as tokenizer is the default tool, it will be loaded as well even without calling
pips = 'tok,lem,pos,dep,chunk,cons'
nlp = language.Pipeline(pips)
# you can see the pipeline with this code
print(nlp.analyze_pipes(pretty=True))
# doc is an SpaCy object
doc = nlp('از قصهٔ کودکیشان که میگفت، گاهی حرص میخورد!')
doc
object has different extensions. First, there are sentences
in doc
which is the list of the list of Token
. Each Token
also has its own extensions. Note that we defined our own extension as well in DadmaTools. If any pipeline related to the specific extensions is not called, that extension will have no value.
To better see the results which you can use this code:
dictionary = language.to_json(pips, doc)
print(dictionary)
[[{'id': 1, 'text': 'از', 'lemma': 'از', 'pos': 'ADP', 'rel': 'case', 'root': 2}, {'id': 2, 'text': 'قصهٔ', 'lemma': 'قصه', 'pos': 'NOUN', 'rel': 'obl', 'root': 10}, {'id': 3, 'text': 'کودکی', 'lemma': 'کودکی', 'pos': 'NOUN', 'rel': 'nmod', 'root': 2}, {'id': 4, 'text': 'شان', 'lemma': 'آنها', 'pos': 'PRON', 'rel': 'nmod', 'root': 3}, {'id': 5, 'text': 'که', 'lemma': 'که', 'pos': 'SCONJ', 'rel': 'mark', 'root': 6}, {'id': 6, 'text': 'می\u200cگفت', 'lemma': 'گفت#گو', 'pos': 'VERB', 'rel': 'acl', 'root': 2}, {'id': 7, 'text': '،', 'lemma': '،', 'pos': 'PUNCT', 'rel': 'punct', 'root': 6}, {'id': 8, 'text': 'گاهی', 'lemma': 'گاه', 'pos': 'NOUN', 'rel': 'obl', 'root': 10}, {'id': 9, 'text': 'حرص', 'lemma': 'حرص', 'pos': 'NOUN', 'rel': 'compound:lvc', 'root': 10}, {'id': 10, 'text': 'می\u200cخورد', 'lemma': 'خورد#خور', 'pos': 'VERB', 'rel': 'root', 'root': 0}, {'id': 11, 'text': '!', 'lemma': '!', 'pos': 'PUNCT', 'rel': 'punct', 'root': 10}]]
sentences = doc._.sentences
for sentence in sentences:
text = sentence.text
for token in sentences:
token_text = token.text
lemma = token.lemma_ ## this has value only if lem is called
pos_tag = token.pos_ ## this has value only if pos is called
dep = token.dep_ ## this has value only if dep is called
dep_arc = token._.dep_arc ## this has value only if dep is called
sent_constituency = doc._.constituency ## this has value only if cons is called
sent_chunks = doc._.chunks ## this has value only if cons is called
ners = doc._.ners ## this has value only if ner is called
Note that _.constituency
and _.chunks
are the object of SuPar class.
Loading Persian NLP Datasets
We provide an easy-to-use way to load some popular Persian NLP datasets
Here is the list of supported datasets.
Dataset | Task |
---|---|
PersianNER | Named Entity Recognition |
ARMAN | Named Entity Recognition |
Peyma | Named Entity Recognition |
FarsTail | Textual Entailment |
FaSpell | Spell Checking |
PersianNews | Text Classification |
PerUDT | Universal Dependency |
PnSummary | Text Summarization |
SnappfoodSentiment | Sentiment Classification |
TEP | Text Translation(eng-fa) |
WikipediaCorpus | Corpus |
PersianTweets | Corpus |
all datasets are iterator and can be used like below:
from dadmatools.datasets import FarsTail
from dadmatools.datasets import SnappfoodSentiment
from dadmatools.datasets import Peyma
from dadmatools.datasets import PerUDT
from dadmatools.datasets import PersianTweets
from dadmatools.datasets import PnSummary
farstail = FarsTail()
#len of dataset
print(len(farstail.train))
#like a generator
print(next(farstail.train))
#dataset details
pn_summary = PnSummary()
print('PnSummary dataset information: ', pn_summary.info)
#loop over dataset
snpfood_sa = SnappfoodSentiment()
for i, item in enumerate(snpfood_sa.test):
print(item['comment'], item['label'])
#get first tokens' lemma of all dev items
perudt = PerUDT()
for token_list in perudt.dev:
print(token_list[0]['lemma'])
#get NER tag of first Peyma's data
peyma = Peyma()
print(next(peyma.data)[0]['tag'])
#corpus
tweets = PersianTweets()
print('tweets count : ', len(tweets.data))
print('sample tweet: ', next(tweets.data))
get dataset info:
from dadmatools.datasets import get_all_datasets_info
get_all_datasets_info().keys()
#dict_keys(['Persian-NEWS', 'fa-wiki', 'faspell', 'PnSummary', 'TEP', 'PerUDT', 'FarsTail', 'Peyma', 'snappfoodSentiment', 'Persian-NER', 'Arman', 'PerSent'])
#specify task
get_all_datasets_info(tasks=['NER', 'Sentiment-Analysis'])
the output will be:
{"ARMAN": {"description": "ARMAN dataset holds 7,682 sentences with 250,015 sentences tagged over six different classes.\n\nOrganization\nLocation\nFacility\nEvent\nProduct\nPerson",
"filenames": ["train_fold1.txt",
"train_fold2.txt",
"train_fold3.txt",
"test_fold1.txt",
"test_fold2.txt",
"test_fold3.txt"],
"name": "ARMAN",
"size": {"test": 7680, "train": 15361},
"splits": ["train", "test"],
"task": "NER",
"version": "1.0.0"},
"PersianNer": {"description": "source: https://github.com/Text-Mining/Persian-NER",
"filenames": ["Persian-NER-part1.txt",
"Persian-NER-part2.txt",
"Persian-NER-part3.txt",
"Persian-NER-part4.txt",
"Persian-NER-part5.txt"],
"name": "PersianNer",
"size": 976599,
"splits": [],
"task": "NER",
"version": "1.0.0"},
"Peyma": {"description": "source: http://nsurl.org/2019-2/tasks/task-7-named-entity-recognition-ner-for-farsi/",
"filenames": ["peyma/600K", "peyma/300K"],
"name": "Peyma",
"size": 10016,
"splits": [],
"task": "NER",
"version": "1.0.0"},
"snappfoodSentiment": {"description": "source: https://huggingface.co/HooshvareLab/bert-fa-base-uncased-sentiment-snappfood",
"filenames": ["snappfood/train.csv",
"snappfood/test.csv",
"snappfood/dev.csv"],
"name": "snappfoodSentiment",
"size": {"dev": 6274, "test": 6972, "train": 56516},
"splits": ["train", "test", "dev"],
"task": "Sentiment-Analysis",
"version": "1.0.0"}}
Loading Persian Word Embeddings
download, load and use some pre-trained Persian word embeddings.
dadmatools supports all glove, fasttext, and word2vec formats.
from dadmatools.embeddings import get_embedding, get_all_embeddings_info, get_embedding_info
from pprint import pprint
pprint(get_all_embeddings_info())
#get embedding information of specific embedding
embedding_info = get_embedding_info('glove-wiki')
#### load embedding ####
word_embedding = get_embedding('glove-wiki')
#get vector of the word
print(word_embedding['سلام'])
#vocab
vocab = word_embedding.get_vocab()
### some useful functions ###
print(word_embedding.top_nearest("زمستان", 10))
print(word_embedding.similarity('کتب', 'کتاب'))
print(word_embedding.embedding_text('امروز هوای خوبی بود'))
The following word embeddings are currently supported:
Name | Embedding Algorithm | Corpus |
---|---|---|
glove-wiki |
glove | Wikipedia |
fasttext-commoncrawl-bin |
fasttext | CommonCrawl |
fasttext-commoncrawl-vec |
fasttext | CommonCrawl |
word2vec-conll |
word2vec | Persian CoNLL17 corpus |
Evaluation
We have compared our pos tagging, dependancy parsing, and lemmatization models to stanza
and hazm
.
PerDT (F1 score) | |||
Toolkit | POS Tagger (UPOS) | Dependancy Parser (UAS/LAS) | Lemmatizer |
DadmaTools | 97.52% | 95.36% / 92.54% | 99.14% |
stanza | 97.35% | 93.34% / 91.05% | 98.97% |
hazm | - | - | 89.01% |
Seraji (F1 score) | |||
Toolkit | POS Tagger (UPOS) | Dependancy Parser (UAS/LAS) | Lemmatizer |
DadmaTools | 97.83% | 92.5% / 89.23% | - |
stanza | 97.43% | 87.20% / 83.89% | - |
hazm | - | - | 86.93% |
Tehran university tree bank (F1 score) | |
Toolkit | Constituency Parser |
DadmaTools (without preprocess)) | 82.88% |
Stanford (with some preprocess on POS tags) | 80.28 |
Installation
To get started using DadmaTools in your python project, simply install via the pip package. Note that installing the default pip package will not install all NLP libraries because we want you to have the freedom to limit the dependency on what you use. Instead, we provide you with an installation option if you want to install all the required dependencies.
Install with pip
To get started using DadmaTools, simply install the project with pip:
pip install dadmatools
Note that the default installation of DadmaTools does install other NLP libraries such as SpaCy and supar.
You can check the requirements.txt
file to see what version the packages has been tested with.
Install from github
Alternatively you can install the latest version from github using:
pip install git+https://github.com/Dadmatech/dadmatools.git
How to use (Colab)
You can see the codes and the output here.
Cite
Will be added in future.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file dadmatools_light-1.2.0-py3-none-any.whl
.
File metadata
- Download URL: dadmatools_light-1.2.0-py3-none-any.whl
- Upload date:
- Size: 224.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.7.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0a4009b2dfafc18b371ef8511f8cf9d8729f9f21d0d3146363add9633521e3c6 |
|
MD5 | b7fdaa7bbe55364efffdf837ce7ba7ab |
|
BLAKE2b-256 | 7b5c38394b37151313a2be979ab3362b8636c623f0a91c5c5faff7b487378eb1 |