Ensemble based data-assimilation and field inversion.
Project description
DAFI - Data Assimilation and Field Inversion
Ensemble based data-assimilation and field inversion.
Developed at Dr. Heng Xiao's group at Virginia Tech: Data-Enabled Computational Mechanics Laboratory at Virgnia Tech.
Website: https://dafi.readthedocs.io
Cite: C. A. Michelén Ströfer, X-L. Zhang, H. Xiao. DAFI: An open-source framework for ensemble-based data assimilation and field inversion. Communications in Computational Physics 29, pp. 1583-1622, 2021. DOI: 10.4208/cicp.OA-2020-0178. Also available at: arxiv: 2012.02651.
List of publications using DAFI:
-
C. A. Michelén Ströfer, X-L. Zhang, H. Xiao, O. Coutier-Delgosha. Enforcing boundary conditions on physical fields in Bayesian inversion. Computer Methods in Applied Mechanics and Engineering 367, 113097, 2020. DOI: 10.1016/j.cma.2020.113097. Also available at: arxiv: 1911.06683.
-
X.-L. Zhang, C. A. Michelén Ströfer, H. Xiao. Regularization of ensemble Kalman methods for inverse problems. Journal of Computational Physics, 416, 109517, 2020. DOI: 10.1016/j.jcp.2020.109517. Also available at: arxiv: 1910.01292.
-
X.-L. Zhang, H. Xiao, Th. Gomez, O. Coutier-Delgosha. Evaluation of ensemble methods for quantifying uncertainties in steady-state CFD applications with small ensemble sizes. Computers and Fluids, 203, 104530, 2020. DOI: 10.1016/j.compfluid.2020.104530. Also available at: arxiv: 2004.05541.
Contributors:
- Carlos A. Michelén Ströfer
- Xinlei Zhang
- Jianxun Wang
- Rui Sun
- Jinlong Wu
Contact: Carlos A. Michelén Ströfer; Heng Xiao
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file DAFI-1.0.2.tar.gz
.
File metadata
- Download URL: DAFI-1.0.2.tar.gz
- Upload date:
- Size: 34.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5346f4512b4072154275cc7d3f1aef2836e692ae69f000ec3483086cb595994a |
|
MD5 | aee8f2f136f4acf5fde5675b64c478ec |
|
BLAKE2b-256 | 5e1c3b637f38e727b2bd53393ae1f8face7343ffd8c8b9ae2e015fe5b203b692 |