Skip to main content

Deep Learning module for Dafne

Project description

Sets of classes and interfaces for the definition of deep learning models. The framework is conceived to be extensible and serializable, in order to provide models that can be stored and/or sent through the network.

Interfaces.py

Set of abstract classes that describe models and model providers.

DeepLearningClass

The rationale behind this is that an algorithm not only depends on the model, but might require some preprocessing steps (reformatting, normalization) before the application of the model itself. The interface is also "incremental-learning-oriented" as it provides abstract methods for the calculation and integration of deltas. The class provides operator override for the calculation of deltas (D = A-B) and call override for the apply method. An instance of DeepLearningClass should be able to simply provide the expected result when called with the appropriate input data (in form of dict). The most common data for our case will be:

  • Input: {'image': 2D image, 'resolution': Sequence with pixel sizes}
  • Output: for Classifiers: str, for Segmenters: dict[str: image] where str is the label and the image is a 2D numpy array containing the mask corresponding to the string.

ModelProvider

This is an abstract class that is intended to encapsulate the logic of model load/transfer. It will have two subclasses, LocalModelProvider and RemoteModelProvider. In both cases, the method load_model of this class accepts a description of the requested model and will return an instance of DeepLearningClass. In principle, LocalModelProvider will be used on the server, and RemoteModelProvider on the client.

DynamicDLModel

Concrete implementation of a DeepLearningClass which provides flexibility and serialization. This class delegates the important methods of the model implementation to top-level functions that are passed at the construction time. These functions can be easily serialized with the dill library. Constructor:

    def __init__(self, model_id, # a unique ID to avoid mixing different models
             init_model_function, # inits the model. Accepts no parameters and returns the model
             apply_model_function, # function that applies the model. Has the object, and image, and a sequence containing resolutions as parameters
             weights_to_model_function = default_keras_weights_to_model_function, # put model weights inside the model.
             model_to_weights_function = default_keras_model_to_weights_function, # get the weights from the model in a pickable format
             calc_delta_function = default_keras_delta_function, # calculate the weight delta
             apply_delta_function = default_keras_apply_delta_function, # apply a weight delta
             incremental_learn_function = None, # function to perform an incremental learning step
             weights = None): # initial weights

This allows the implementation of a very generic deep learning algorithm which includes the preprocessing steps in a way that can be serialized and defined at runtime, so if we want to change the model, we don't need to change the code of the client or server, as the implementation is self-contained within the model. The class provides the methods dump(file_descriptor) and str = dumps() to serialize and the static methods Load(file_descriptor) and Loads(str) to deserialize. Default functions for loading/setting keras weights and calculating deltas from keras models (which provide a get_weights(), set_weights() interface with lists of numpy arrays) are currently provided. Important note when defining the functions: in order for them to be serializable, they must be completely self-contained. That is, all imports should happen inside the functions and all the external function call should be implemented as nested functions. Common algorithms (such as padorcut.py which pads or cuts an image to fit it to a specific matrix size) should be placed in the repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dafne-dl-1.3a4.tar.gz (35.1 kB view details)

Uploaded Source

Built Distribution

dafne_dl-1.3a4-py3-none-any.whl (44.1 kB view details)

Uploaded Python 3

File details

Details for the file dafne-dl-1.3a4.tar.gz.

File metadata

  • Download URL: dafne-dl-1.3a4.tar.gz
  • Upload date:
  • Size: 35.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for dafne-dl-1.3a4.tar.gz
Algorithm Hash digest
SHA256 e3bc113d292c72a1d670215b18ebf6a322b14cce0a6e5d0b519582d47eb6c78b
MD5 b14caea39da317cd690223db847a9033
BLAKE2b-256 ef12252b69c1dc0fbf3ac230c468cc00221055b3f7d47e17e1ca23ecf0ee33ca

See more details on using hashes here.

File details

Details for the file dafne_dl-1.3a4-py3-none-any.whl.

File metadata

  • Download URL: dafne_dl-1.3a4-py3-none-any.whl
  • Upload date:
  • Size: 44.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for dafne_dl-1.3a4-py3-none-any.whl
Algorithm Hash digest
SHA256 80663d79dfa58495c371503dccc802e081ec89463fa671d2435c7da0ede28e71
MD5 8513c3ece1f924c7405c4bc96e4ee2d5
BLAKE2b-256 262936e46359c204100226f99a598386e7577da81fc15fa929b89cb9a0ea55f0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page