Skip to main content

A library that enables programmatic interaction with daft.ie.

Project description

Build Status codecov

Table of Contents

Overview

Daftlistings enables programmatic interaction with daft.ie.

Install

daftlistings is available on the Python Package Index (PyPI) at https://pypi.python.org/pypi/daftlistings

You can install daftlistings using pip.

$ pip install daftlistings

Basic Usage

from daftlistings import Daft

daft = Daft()

listings = daft.get_listings()

for listing in listings:
    print(listing.get_formalised_address())
    print(listing.get_daft_link())

Examples

Get the current properties for rent in Dublin that are between €1000 and €1500 per month and contact the advertiser for each listing.

from daftlistings import Daft, CommercialType, RentType

daft = Daft()
daft.set_county('Dublin City')
daft.set_listing_type(RentType.APARTMENTS)
daft.set_min_price(1000)
daft.set_max_price(1500)

listings = daft.get_listings()

for listing in listings:
    print(listing.get_formalised_address())
    print(listing.get_daft_link())
    print(listing.get_price())
    for facility in listing.get_facilities():
        print(facility)

    contact = listing.contact_advertiser(
        name="Jane Doe",
        contact_number="019202222",
        email="jane@example.com",
        message="Hi, I seen your listing on daft.ie and I would like to schedule a viewing."
    )

    if contact:
        print("Message sent")

Retrieve commercial office listings in Dublin.

from daftlistings import Daft, CommercialType, SaleType

daft = Daft()

daft.set_county("Dublin")
daft.set_listing_type(SaleType.COMMERCIAL)
daft.set_commercial_property_type(CommercialType.OFFICE)

listings = daft.get_listings()

for listing in listings:
    print(listing.get_formalised_address())
    print(listing.get_daft_link())
    print(listing.get_price())

Get the current sale agreed prices for properties in Dublin.

from daftlistings import Daft, SaleType

daft = Daft()

daft.set_county('Dublin City')
daft.set_listing_type(SaleType.PROPERTIES)
daft.set_min_price(1000)
daft.set_max_price(1500)
daft.set_sale_agreed(True)

listings = daft.get_listings()

for listing in listings:
    print(listing.get_formalised_address())
    print(listing.get_daft_link())
    print(listing.get_price())

You can sort the listings by price, distance, upcoming viewing or date using the SortType object. The SortOrder object allows you to sort the listings descending or ascending. For example:

from daftlistings import SortOrder, SortType, SaleType, SortOrder

daft = Daft()

daft.set_county('Dublin City')
daft.set_area('Lucan')
daft.set_listing_type(SaleType.PROPERTIES)
daft.set_min_price(150000)
daft.set_max_price(175000)
daft.set_sort_order(SortOrder.ASCENDING)
daft.set_sort_by(SortType.PRICE)


listings = daft.get_listings()

for listing in listings:
    print(listing.get_formalised_address())
    print(listing.get_daft_link())
    print(listing.get_price())

Retrieve all properties for sale in a given list of areas. This example loops through each page of listings and prints the result.

from daftlistings import Daft, SaleType

offset = 0
pages = True

while pages:
    daft = Daft()
    daft.set_county('Dublin')
    daft.set_area([
        'Blackrock',
        'Castleknock',
        'Rathmines'
    ])
    daft.set_listing_type(SaleType.PROPERTIES)
    daft.set_offset(offset)

    listings = daft.get_listings()

    if not listings:
        pages = False

    for listing in listings:
        print(listing.get_agent_url())
        print(listing.get_price())
        print(listing.get_formalised_address())
        print(listing.get_daft_link())
        print(' ')


    offset += 10

Get apartments to let in Dublin City along the Dart line.

from daftlistings import Daft, AreaType, RentType, TransportRoute

daft = Daft()

daft.set_county('Dublin City')
daft.set_area_type(AreaType.TRANSPORT_ROUTE)
daft.set_listing_type(RentType.APARTMENTS)
daft.set_public_transport_route(TransportRoute.DART)

listings = daft.get_listings()

for listing in listings:
    print(listing.get_formalised_address())
    print(listing.get_price())
    print(' ')

Find student accommodation near Trinity College Dublin that is between 800 and 1000 per month.

from daftlistings import Daft, University, StudentAccommodationType, SortType, SortOrder, RentType

daft = Daft()

daft.set_listing_type(RentType.STUDENT_ACCOMMODATION)
daft.set_university(University.TCD)
daft.set_student_accommodation_type(StudentAccommodationType.ROOM_TO_SHARE)
daft.set_min_price(800)
daft.set_max_price(1000)
daft.set_sort_by(SortType.PRICE)
daft.set_sort_order(SortOrder.ASCENDING)
listings = daft.get_listings()

for listing in listings:
    print(listing.get_price())
    print(listing.get_formalised_address())
    print(listing.get_daft_link())
    print(' ')

Search for people to teamup with in Dublin.

from daftlistings import TeamUpWith, Teamup, County

t = Teamup()
t.set_county(County.DUBLIN)
t.set_team_up_with(TeamUpWith.ANY)
t.set_rent(800)
t.set_move_in_date(0)
results = t.get_results()

for r in results:
    print("Name: " + r.name())
    print("Gender: " + r.gender())
    print("Price Range: " + r.price_range())
    print("Areas of Interest: " + r.areas_of_interest())
    print("Looking for: " + r.looking_for())
    print("Length of Lease: " + r.length_of_lease())
    print("Date available: " + r.date_available())
    print("Date entered: " + r.date_entered())
    print("URL: " + r.url())
    print("")

Documentation

The current documentation can be viewed here: https://anthonybloomer.github.io/daftlistings/

The documentation has been created using mkdocs.

To update the documentation, clone the repository and edit docs/index.md

To view your changes, run:

$ mkdocs serve

To build the documentation, run:

$ mkdocs build

This will create a directory called site. Copy the site directory to a new directory and checkout gh-pages

$ git checkout gh-pages

Copy any changes from the site directory to this directory and push your changes.

Development Version

Before any new changes are pushed to PyPi, you can clone the development version to avail of any new featuress.

$ git clone https://github.com/AnthonyBloomer/daftlistings.git
$ cd daftlistings
$ virtualenv env
$ source env/bin/activate
$ pip install -r requirements.txt

Tests

The Python unittest module contains its own test discovery function, which you can run from the command line:

$ python -m unittest discover tests/

Contributing

  • Fork the project and clone locally.

  • Create a new branch for what you’re going to work on.

  • Push to your origin repository.

  • Include tests and update documentation if necessary.

  • Create a new pull request in GitHub.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

daftlistings-1.4.0.tar.gz (12.0 kB view hashes)

Uploaded Source

Built Distribution

daftlistings-1.4.0-py2.py3-none-any.whl (16.6 kB view hashes)

Uploaded Python 2 Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page