Skip to main content

A library that enables programmatic interaction with daft.ie.

Project description

# Daftlistings

Python library that enables Programmatic interaction with [Daft.ie](https://daft.ie)

## Installation

daftlistings is available on the Python Package Index (PyPI). You can install daftlistings using pip.

``` bash
virtualenv env
source env/bin/activate
pip install daftlistings
```

To install the development version, run:

``` bash
pip install https://github.com/AnthonyBloomer/daftlistings/archive/dev.zip
```

## Examples

Get apartments to let in Dublin City that are between €1000 and €1500 and contact the advertiser of each listing.

``` python
from daftlistings import Daft, RentType

daft = Daft()

daft.set_county("Dublin City")
daft.set_listing_type(RentType.APARTMENTS)
daft.set_min_price(1000)
daft.set_max_price(1500)

listings = daft.search()

if len(listings) > 0:
first = listings[0]

contact = first.contact_advertiser(
name="Jane Doe",
contact_number="019202222",
email="jane@example.com",
message="Hi, I seen your listing on daft.ie and I would like to schedule a viewing."
)

if contact:
print("Advertiser contacted")
```

You can sort the listings by price, distance, upcoming viewing or date using the SortType object. The SortOrder object allows you to sort the listings descending or ascending.

``` python

from daftlistings import Daft, SortOrder, SortType, RentType

daft = Daft()

daft.set_county("Dublin City")
daft.set_listing_type(RentType.ANY)
daft.set_sort_order(SortOrder.ASCENDING)
daft.set_sort_by(SortType.PRICE)
daft.set_max_price(2500)

listings = daft.search()

for listing in listings:
print(listing.formalised_address)
print(listing.daft_link)
print(listing.price)
features = listing.features
if features is not None:
print('Features: ')
for feature in features:
print(feature)
print("")

```

Parse listing data from a given search result url.

``` python

from daftlistings import Daft

offset = 0

while 1:
daft = Daft()
daft.set_result_url("https://www.daft.ie/dublin-city/new-homes-for-sale/?ad_type=new_development")
daft.set_offset(offset)
listings = daft.search()
if not listings:
break
for listing in listings:
print(listing.formalised_address)
print(listing.price)
print(' ')
offset += 10

```

Find student accommodation near UCD that is between 850 and 1000 per month

``` python
from daftlistings import Daft, SortOrder, SortType, RentType, University, StudentAccommodationType

daft = Daft()
daft.set_listing_type(RentType.STUDENT_ACCOMMODATION)
daft.set_university(University.UCD)
daft.set_student_accommodation_type(StudentAccommodationType.ROOMS_TO_SHARE)
daft.set_min_price(850)
daft.set_max_price(1000)
daft.set_sort_by(SortType.PRICE)
daft.set_sort_order(SortOrder.ASCENDING)
daft.set_offset(offset)
listings = daft.search()

for listing in listings:
print(listing.price)
print(listing.formalised_address)
print(listing.daft_link)

```

## Documentation

The documentation has been created using [mkdocs](http://www.mkdocs.org/) and the [mkdocs material theme](https://squidfunk.github.io/mkdocs-material/). To update the documentation, clone the repository and edit the markdown files in the docs/ directory.

To view your changes, run:

``` bash
mkdocs serve
```


To build and publish the documentation, run:

``` bash
sh deploy_docs.sh "Updating documentation"
```

## Tests

The Python unittest module contains its own test discovery function, which you can run from the command line:

```
python -m unittest discover tests/
```

## Contributing

- Fork the project and clone locally.
- Create a new branch for what you're going to work on.
- Push to your origin repository.
- Create a new pull request in GitHub.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

daftlistings-1.6.1.tar.gz (12.2 kB view details)

Uploaded Source

Built Distribution

daftlistings-1.6.1-py2.py3-none-any.whl (13.5 kB view details)

Uploaded Python 2Python 3

File details

Details for the file daftlistings-1.6.1.tar.gz.

File metadata

  • Download URL: daftlistings-1.6.1.tar.gz
  • Upload date:
  • Size: 12.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.11.1 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.14.0 CPython/2.7.10

File hashes

Hashes for daftlistings-1.6.1.tar.gz
Algorithm Hash digest
SHA256 895604ed5a6ee9c690734680ad9658dfc42a9b062b2cdc66e5fc689fc8220a57
MD5 f3e1742209368509bfbc48fc32855731
BLAKE2b-256 562f23a1337d912422b47a5a2ace9eb7afead5c658639fe503e84bd9c0444e22

See more details on using hashes here.

File details

Details for the file daftlistings-1.6.1-py2.py3-none-any.whl.

File metadata

  • Download URL: daftlistings-1.6.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 13.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.11.1 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.14.0 CPython/2.7.10

File hashes

Hashes for daftlistings-1.6.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 825d81e41e63e85f8b47fcc4832a4ebbbf51001e5ac12adbca8affe6aca91414
MD5 76b1b1287bfd52ed8edf6def6510f785
BLAKE2b-256 00aa5838f46fac931fd73626ae8124bec7e6d426973403ccc4f68955a732b5b6

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page