Skip to main content

Dynamically build Airflow DAGs from YAML files

Project description

dag-factory

Github Actions Coverage PyPi Code Style Downloads

dag-factory is a library for dynamically generating Apache Airflow DAGs from YAML configuration files.

Installation

To install dag-factory run pip install dag-factory. It requires Python 3.6.0+ and Apache Airflow 1.10+.

Usage

After installing dag-factory in your Airflow environment, there are two steps to creating DAGs. First, we need to create a YAML configuration file. For example:

example_dag1:
  default_args:
    owner: 'example_owner'
    start_date: 2018-01-01  # or '2 days'
    end_date: 2018-01-05
    retries: 1
    retry_delay_sec: 300
  schedule_interval: '0 3 * * *'
  concurrency: 1
  max_active_runs: 1
  dagrun_timeout_sec: 60
  default_view: 'tree'  # or 'graph', 'duration', 'gantt', 'landing_times'
  orientation: 'LR'  # or 'TB', 'RL', 'BT'
  description: 'this is an example dag!'
  on_success_callback_name: print_hello
  on_success_callback_file: /usr/local/airflow/dags/print_hello.py
  on_failure_callback_name: print_hello
  on_failure_callback_file: /usr/local/airflow/dags/print_hello.py
  tasks:
    task_1:
      operator: airflow.operators.bash_operator.BashOperator
      bash_command: 'echo 1'
    task_2:
      operator: airflow.operators.bash_operator.BashOperator
      bash_command: 'echo 2'
      dependencies: [task_1]
    task_3:
      operator: airflow.operators.bash_operator.BashOperator
      bash_command: 'echo 3'
      dependencies: [task_1]

Then in the DAGs folder in your Airflow environment you need to create a python file like this:

from airflow import DAG
import dagfactory

dag_factory = dagfactory.DagFactory("/path/to/dags/config_file.yml")

dag_factory.clean_dags(globals())
dag_factory.generate_dags(globals())

And this DAG will be generated and ready to run in Airflow!

screenshot

Notes

HttpSensor (since 0.10.0)

The package airflow.sensors.http_sensor works with all supported versions of Airflow. In Airflow 2.0+, the new package name can be used in the operator value: airflow.providers.http.sensors.http

The following example shows response_check logic in a python file:

task_2:
      operator: airflow.sensors.http_sensor.HttpSensor
      http_conn_id: 'test-http'
      method: 'GET'
      response_check_name: check_sensor
      response_check_file: /path/to/example1/http_conn.py
      dependencies: [task_1]

The response_check logic can also be provided as a lambda:

task_2:
      operator: airflow.sensors.http_sensor.HttpSensor
      http_conn_id: 'test-http'
      method: 'GET'
      response_check_lambda: 'lambda response: "ok" in reponse.text'
      dependencies: [task_1]

Benefits

  • Construct DAGs without knowing Python
  • Construct DAGs without learning Airflow primitives
  • Avoid duplicative code
  • Everyone loves YAML! ;)

Contributing

Contributions are welcome! Just submit a Pull Request or Github Issue.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dag-factory-hotfix-0.11.1.tar.gz (12.3 kB view details)

Uploaded Source

Built Distribution

dag_factory_hotfix-0.11.1-py3-none-any.whl (12.9 kB view details)

Uploaded Python 3

File details

Details for the file dag-factory-hotfix-0.11.1.tar.gz.

File metadata

  • Download URL: dag-factory-hotfix-0.11.1.tar.gz
  • Upload date:
  • Size: 12.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.5.0.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for dag-factory-hotfix-0.11.1.tar.gz
Algorithm Hash digest
SHA256 40b11f90a24f0f5f70323cd308e24f0f959cf4bac54383a98f47665d4d744d30
MD5 df8dbdf412e49ffeb467fcd9a5313ef3
BLAKE2b-256 b900c75643f1c2a1e1d28a267ea742ea7abca06139bf34092f8e78808f22f400

See more details on using hashes here.

File details

Details for the file dag_factory_hotfix-0.11.1-py3-none-any.whl.

File metadata

  • Download URL: dag_factory_hotfix-0.11.1-py3-none-any.whl
  • Upload date:
  • Size: 12.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.5.0.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for dag_factory_hotfix-0.11.1-py3-none-any.whl
Algorithm Hash digest
SHA256 8686a423fde9df4de6a428ea6b35ac9690c98b88f3080b834b0c0679429ccdc8
MD5 ed7803852cb03b1b4c6d6a74339e9b27
BLAKE2b-256 6b46cde647103c4a527753d1157864080204200e5647481a7b114bee80c75ae6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page