Skip to main content

DAG tools to process numerical topography and landscape evolution models

Project description

DAGGER

DAG tools to process numerical topography and landscape evolution models

Features

  • TODO

References

TODO add and format the references

Credits

Main developer: Boris Gailleton (boris.gailleton@univ-rennes.fr)

Project partly funded byt projects within the SUBITOP ITN, University of Edinburgh, GFZ Postdam, ERC Feasible, Université de Rennes

This package formatting was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

Some I/O operations are using libnpy (MIT), a header-only c++ library to write/load simple numpy arrays.

History

0.0.15 (25/10/2024)

  • Bumping up numpy version in requirements

0.0.14 (15/10/2024)

  • Refactoring the install process

  • DAGGER becomes primarily a support library to Python

  • Last update before 0.1.0 which will add a lot of cleaning?

0.0.13 (04/07/2024)

  • Refactoring some accessors

  • Adding helpers for riverdale

  • starting to add xtensor-python

  • D4 standalone priority_flood

  • Labour voted in parlement

0.0.12 (06/03/2024)

  • Many improvements on graphflood

  • Many bug fixes

  • Starting to add river analysis tools (early work)

0.0.11 (05/01/2023)

  • Minor improvements and cleanings

  • Minor bug fixes in the installation (related to pep 517 and 518)

  • Start of some refactoring prior to version 0.1

0.0.10 (13/11/2023)

  • Loads of minor bug fixes and random additions on the experimental side

0.0.9 (23/10/2023)

  • A lot of minor fixes for the graph, classic connector and graphflood

  • Majors additions behind teh scenes for the next big refactoring (experimental features in)

0.0.8 (01/08/2023)

  • Fixing bugs in the connectors

  • Adding tools for hydrogeomorphometrics in graphflood

  • Adding some standalone models to trackscape

0.0.7 (01/08/2023)

  • Hotfixes

0.0.6 (01/08/2023)

  • Adding quick river and drainage divide extraction tools

0.0.4 (20/07/2023)

  • Hot fix (still developping the CI/CD toolchain)

0.0.3 (20/07/2023)

  • Fixing compilation for conda-forge on MacOS and Windows

  • Adding a quick topo function as quick test

0 (2023-07-20)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

daggerpy-0.0.15-cp312-cp312-win_amd64.whl (403.3 kB view details)

Uploaded CPython 3.12 Windows x86-64

daggerpy-0.0.15-cp312-cp312-manylinux_2_34_x86_64.whl (585.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.34+ x86-64

daggerpy-0.0.15-cp312-cp312-macosx_11_0_arm64.whl (541.8 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

daggerpy-0.0.15-cp312-cp312-macosx_10_14_x86_64.whl (582.6 kB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

daggerpy-0.0.15-cp311-cp311-win_amd64.whl (401.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

daggerpy-0.0.15-cp311-cp311-manylinux_2_34_x86_64.whl (584.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.34+ x86-64

daggerpy-0.0.15-cp311-cp311-macosx_11_0_arm64.whl (538.3 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

daggerpy-0.0.15-cp311-cp311-macosx_10_14_x86_64.whl (577.3 kB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

daggerpy-0.0.15-cp310-cp310-win_amd64.whl (399.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

daggerpy-0.0.15-cp310-cp310-manylinux_2_34_x86_64.whl (582.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.34+ x86-64

daggerpy-0.0.15-cp310-cp310-macosx_11_0_arm64.whl (537.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

daggerpy-0.0.15-cp310-cp310-macosx_10_14_x86_64.whl (576.0 kB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

File details

Details for the file daggerpy-0.0.15-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for daggerpy-0.0.15-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 d4ed336e0e68c3bd3acbf2609efc7c460214bc17c19f16c5cd197b2abd431cf7
MD5 6c3538a8c7877e91e2680050f659591c
BLAKE2b-256 77620623847a2ab2e69cb3a0191e23aafd5625d93d292a9b11e01bba2cc05431

See more details on using hashes here.

File details

Details for the file daggerpy-0.0.15-cp312-cp312-manylinux_2_34_x86_64.whl.

File metadata

File hashes

Hashes for daggerpy-0.0.15-cp312-cp312-manylinux_2_34_x86_64.whl
Algorithm Hash digest
SHA256 77b8bc54b2e43aeeadf8ff64c3da0838445db394ff6f4731f9877ba960336017
MD5 04a09f617eeced7a01ceb4a91212e7f2
BLAKE2b-256 58a0bde228041847dddb43960fc52134fae8d1eb049fc86de764ae2786e509c1

See more details on using hashes here.

File details

Details for the file daggerpy-0.0.15-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for daggerpy-0.0.15-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 32c111971d9dc36fd604f34bbe92db240e7ea79028a709d0db77e8a42433d6ff
MD5 bc5b43e69a6ec01a231c6110c620e26f
BLAKE2b-256 2044fbed1f79cf64f220744625f9d6c0054f3cb55fc36be14926ddafc32b8848

See more details on using hashes here.

File details

Details for the file daggerpy-0.0.15-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for daggerpy-0.0.15-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 cca0aca89dce58194d6c93670e9d19356133e14a2b63beeaa016ec91f25dda79
MD5 63e5ba29ac2ab6b9dcea6e2522c4a4f7
BLAKE2b-256 b9f96f07cee7dd23f23b61af34d9e3ccd8cb5ec9f9749d0ce3b714ad0dbf9f64

See more details on using hashes here.

File details

Details for the file daggerpy-0.0.15-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for daggerpy-0.0.15-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c0f1ea3f7da99d2f19532619a234b11f566da4274f91b2cd990874ea81af06e2
MD5 447046af1f1666e30bd9d452c55c03e3
BLAKE2b-256 4a581ad050c7d1b98b84ca87a282c5f8f0f446020f8a0afd7340f2839135a215

See more details on using hashes here.

File details

Details for the file daggerpy-0.0.15-cp311-cp311-manylinux_2_34_x86_64.whl.

File metadata

File hashes

Hashes for daggerpy-0.0.15-cp311-cp311-manylinux_2_34_x86_64.whl
Algorithm Hash digest
SHA256 a6bb0826d7f0b3b0ed178b00c7b8c9f34cdb0fe3001972f0090ef0a8d5f61e24
MD5 8edcc77e0bcc12a9e8c22d732c0edfb3
BLAKE2b-256 a8f9e68eb0f09450353be969264eff5a83485ea63804a567f17da8a9ca543392

See more details on using hashes here.

File details

Details for the file daggerpy-0.0.15-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for daggerpy-0.0.15-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 65637b5add48b4acaea3bde70d2038d6df746bb1b29517e4e0adc1772cfee9e8
MD5 8c9df44dc1f64d5ae4847e4a3392d6ee
BLAKE2b-256 e56957a77e3af70f5590b86af22dda0cd9027e7efaad2b539162ce6f2f717aff

See more details on using hashes here.

File details

Details for the file daggerpy-0.0.15-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for daggerpy-0.0.15-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7977ea7ed7eceb4d383cccc78736ddfe01a05b66c59f13af62814262caaec7db
MD5 394db730b5891d082a661af4f49644d2
BLAKE2b-256 58a596efc084e2eebe9b1c1ab17c415dd6a99ebbc58a075265893cac2193a087

See more details on using hashes here.

File details

Details for the file daggerpy-0.0.15-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for daggerpy-0.0.15-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9c0ac538f7083563ecfa83eb61ad2eecd985e4d66df98f52a89711c1fc00e664
MD5 f2e57e1e2127458a210bcb6baf6a29ca
BLAKE2b-256 e3bf284182623f24aa110fc14588fef1bb4b56aeb0709fa8efdb301e6a4b9041

See more details on using hashes here.

File details

Details for the file daggerpy-0.0.15-cp310-cp310-manylinux_2_34_x86_64.whl.

File metadata

File hashes

Hashes for daggerpy-0.0.15-cp310-cp310-manylinux_2_34_x86_64.whl
Algorithm Hash digest
SHA256 c233cc3beb127cc8f5d47009b0ccf6d3fe68aab28e74f3245ca368173aef9b3e
MD5 7bf7b03761217897aa2ae37955ef9b67
BLAKE2b-256 407c46793f61ce3807e2757a45a1e4b9c798b6113ec4f0c324e956a8fe3a8205

See more details on using hashes here.

File details

Details for the file daggerpy-0.0.15-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for daggerpy-0.0.15-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b3fe6b788d4aa5efab06501933a39ad7499b6a21c5c1e3ef7d93c0511ebb7942
MD5 23485b0b22e2195255811ecfe3bd1215
BLAKE2b-256 127d43219266a529a09a595d5271dd0bd45f5aa7bcc1a3082199c7ec9831d6ac

See more details on using hashes here.

File details

Details for the file daggerpy-0.0.15-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for daggerpy-0.0.15-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 aaca02337cb43aeb4befb8fc3aaa0c63e864a56880cfbab5fcb7ddf4f2b8ff32
MD5 1ef3b8410a156850588ab3f81d7a2ab7
BLAKE2b-256 68a449eedabf40cb6353d7a77d9619afe42b540e881726fa97798f4be59f4af4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page