Skip to main content

DAG tools to process numerical topography and landscape evolution models

Project description

DAGGER

DAG tools to process numerical topography and landscape evolution models

Features

  • TODO

References

TODO add and format the references

Credits

Main developer: Boris Gailleton (boris.gailleton@univ-rennes.fr)

Project partly funded byt projects within the SUBITOP ITN, University of Edinburgh, GFZ Postdam, ERC Feasible, Université de Rennes

This package formatting was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

Some I/O operations are using libnpy (MIT), a header-only c++ library to write/load simple numpy arrays.

History

0.0.14 (15/10/2024)

  • Refactoring the install process

  • DAGGER becomes primarily a support library to Python

  • Last update before 0.1.0 which will add a lot of cleaning?

0.0.13 (04/07/2024)

  • Refactoring some accessors

  • Adding helpers for riverdale

  • starting to add xtensor-python

  • D4 standalone priority_flood

  • Labour voted in parlement

0.0.12 (06/03/2024)

  • Many improvements on graphflood

  • Many bug fixes

  • Starting to add river analysis tools (early work)

0.0.11 (05/01/2023)

  • Minor improvements and cleanings

  • Minor bug fixes in the installation (related to pep 517 and 518)

  • Start of some refactoring prior to version 0.1

0.0.10 (13/11/2023)

  • Loads of minor bug fixes and random additions on the experimental side

0.0.9 (23/10/2023)

  • A lot of minor fixes for the graph, classic connector and graphflood

  • Majors additions behind teh scenes for the next big refactoring (experimental features in)

0.0.8 (01/08/2023)

  • Fixing bugs in the connectors

  • Adding tools for hydrogeomorphometrics in graphflood

  • Adding some standalone models to trackscape

0.0.7 (01/08/2023)

  • Hotfixes

0.0.6 (01/08/2023)

  • Adding quick river and drainage divide extraction tools

0.0.4 (20/07/2023)

  • Hot fix (still developping the CI/CD toolchain)

0.0.3 (20/07/2023)

  • Fixing compilation for conda-forge on MacOS and Windows

  • Adding a quick topo function as quick test

0 (2023-07-20)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

daggerpy-0.0.14-cp312-cp312-win_amd64.whl (403.3 kB view details)

Uploaded CPython 3.12 Windows x86-64

daggerpy-0.0.14-cp312-cp312-manylinux_2_34_x86_64.whl (585.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.34+ x86-64

daggerpy-0.0.14-cp312-cp312-macosx_11_0_arm64.whl (541.8 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

daggerpy-0.0.14-cp311-cp311-win_amd64.whl (401.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

daggerpy-0.0.14-cp311-cp311-manylinux_2_34_x86_64.whl (583.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.34+ x86-64

daggerpy-0.0.14-cp311-cp311-macosx_11_0_arm64.whl (538.3 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

daggerpy-0.0.14-cp310-cp310-win_amd64.whl (399.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

daggerpy-0.0.14-cp310-cp310-manylinux_2_34_x86_64.whl (582.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.34+ x86-64

daggerpy-0.0.14-cp310-cp310-macosx_11_0_arm64.whl (537.1 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

File details

Details for the file daggerpy-0.0.14-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for daggerpy-0.0.14-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 3664640a1970c4e8dca807589acebccbf5a7763f1c0add28b7bfdf42f55881af
MD5 3ef7ae68398fcd468c4e2cb68bb0c96d
BLAKE2b-256 a16f7586934c067e5e16ce51cdca88c1a7c5cebb4c142431c5276503a1e112c5

See more details on using hashes here.

File details

Details for the file daggerpy-0.0.14-cp312-cp312-manylinux_2_34_x86_64.whl.

File metadata

File hashes

Hashes for daggerpy-0.0.14-cp312-cp312-manylinux_2_34_x86_64.whl
Algorithm Hash digest
SHA256 a51129fe93eccbd12695cad9946fd4415087cf28949a40c73ae029c5d65d22bf
MD5 c19f2b11fc6628c10b27735235fb6180
BLAKE2b-256 2e74f71943b99a5b4ef8dcc1e5e12b9056e21a31c9fd9ad28b3978d733255f48

See more details on using hashes here.

File details

Details for the file daggerpy-0.0.14-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for daggerpy-0.0.14-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5afd592149ead3f150e9c8d5d849e602269ff5fb9f47c03a1267071975919aff
MD5 b467f19d6bbe408979d5af98e261892f
BLAKE2b-256 e9504d36306838bdc2b28207726a519c31aa7b07c739791f81d529e9b2644ab2

See more details on using hashes here.

File details

Details for the file daggerpy-0.0.14-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for daggerpy-0.0.14-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 27785326f7bda9fe6a86cc7b9ce9ef3ae65c70a6e38b1c0bf5bca092a692896c
MD5 42c16d5042400329aae42918b9dc5b56
BLAKE2b-256 c5116628ff8cd610cf1fdeefd6d24b57c30affb8d67a9ef38b52eb3b5e69e348

See more details on using hashes here.

File details

Details for the file daggerpy-0.0.14-cp311-cp311-manylinux_2_34_x86_64.whl.

File metadata

File hashes

Hashes for daggerpy-0.0.14-cp311-cp311-manylinux_2_34_x86_64.whl
Algorithm Hash digest
SHA256 6744b8c7387042cffd9896f2f2370e9d61bb01fa92845881f1414ffab53c52ba
MD5 85eb6835e6b3ee5bff3ac87648e3878b
BLAKE2b-256 f0845af86cfa11ce6847a48a82de426568e443c46b067b8ff654a4c5209ff4f3

See more details on using hashes here.

File details

Details for the file daggerpy-0.0.14-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for daggerpy-0.0.14-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 346c1500ae916577486a3c4d23b19b91fdb90717e187759cb1782f2f7b6958d0
MD5 6450fe78600857e92c9d5aa9c5f1aa26
BLAKE2b-256 6e00bbacc813596fe99562c64992a3a402fd5892ac7c6e608756dd628d9481fa

See more details on using hashes here.

File details

Details for the file daggerpy-0.0.14-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for daggerpy-0.0.14-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a8e231ebd2575df74bcb16079a6aafd194a306fc11ffe07c7c093d910e2b4301
MD5 40e7cd10752268c7aaf13e6b956ab032
BLAKE2b-256 874cd2fe35b59dcaa2813e782997cf7e36a82c3934e1832e38fbf67db014ed54

See more details on using hashes here.

File details

Details for the file daggerpy-0.0.14-cp310-cp310-manylinux_2_34_x86_64.whl.

File metadata

File hashes

Hashes for daggerpy-0.0.14-cp310-cp310-manylinux_2_34_x86_64.whl
Algorithm Hash digest
SHA256 ea4bbcde318fb0b48b920d1d2b58f0404bd793072fc6d8acc2b8f3657dfcaf60
MD5 c76fac881bb6bf911e0b5f03aabc93bc
BLAKE2b-256 21513877b4f4447378207b530c15c21869df8ac1220e8ecce12bca1c3947a743

See more details on using hashes here.

File details

Details for the file daggerpy-0.0.14-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for daggerpy-0.0.14-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a46cadc48c7f5f5ec796cd55743caa995e046ca654763c2dfd024afaca721c02
MD5 7986122c8a69c90835abc3297b1c785e
BLAKE2b-256 951117587a2b01df161d086f0169a541c4619982049fa177e8d4e056f121d32b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page