Skip to main content

The data orchestration platform built for productivity.

Project description

dagster logo


Dagster

Dagster is an orchestrator that's designed for developing and maintaining data assets, such as tables, data sets, machine learning models, and reports.

You declare functions that you want to run and the data assets that those functions produce or update. Dagster then helps you run your functions at the right time and keep your assets up-to-date.

Dagster is built to be used at every stage of the data development lifecycle - local development, unit tests, integration tests, staging environments, all the way up to production.

If you're new to Dagster, we recommend reading about its core concepts or learning with the hands-on tutorial.

An asset graph defined in Python:

from dagster import asset
from pandas import DataFrame, read_html, get_dummies
from sklearn.linear_model import LinearRegression

@asset
def country_populations() -> DataFrame:
    df = read_html("https://tinyurl.com/mry64ebh")[0]
    df.columns = ["country", "continent", "rg", "pop2018", "pop2019", "change"]
    df["change"] = df["change"].str.rstrip("%").str.replace("−", "-").astype("float")
    return df

@asset
def continent_change_model(country_populations: DataFrame) -> LinearRegression:
    data = country_populations.dropna(subset=["change"])
    return LinearRegression().fit(
        get_dummies(data[["continent"]]), data["change"]
    )

@asset
def continent_stats(
    country_populations: DataFrame, continent_change_model: LinearRegression
) -> DataFrame:
    result = country_populations.groupby("continent").sum()
    result["pop_change_factor"] = continent_change_model.coef_
    return result

The graph loaded into Dagster's web UI:

image

Installation

Dagster is available on PyPI and officially supports Python 3.7+.

pip install dagster dagit

This installs two modules:

  • Dagster: The core programming model.
  • Dagit: The web interface for developing and operating Dagster jobs and assets.

Documentation

You can find the full Dagster documentation here.

Community

Connect with thousands of other data practitioners building with Dagster. Share knowledge, get help, and contribute to the open-source project. To see featured material and upcoming events, check out our Dagster Community page.

Join our community here:

Contributing

For details on contributing or running the project for development, check out our contributing guide.

License

Dagster is Apache 2.0 licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dagster-1.1.10.tar.gz (910.2 kB view details)

Uploaded Source

Built Distribution

dagster-1.1.10-py3-none-any.whl (1.1 MB view details)

Uploaded Python 3

File details

Details for the file dagster-1.1.10.tar.gz.

File metadata

  • Download URL: dagster-1.1.10.tar.gz
  • Upload date:
  • Size: 910.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.9.6 requests/2.28.2 setuptools/57.5.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/3.8.15

File hashes

Hashes for dagster-1.1.10.tar.gz
Algorithm Hash digest
SHA256 17d647432548b6eb78c12c0d0d9efaf3c3f2694293488b80670c1ad1233c3b20
MD5 700b129a7d5e73ddae732f3b9c8dab4b
BLAKE2b-256 a887c32718a820bac80d36cbff2281380c4bef6b2540358cd0dc5adac1d41503

See more details on using hashes here.

File details

Details for the file dagster-1.1.10-py3-none-any.whl.

File metadata

  • Download URL: dagster-1.1.10-py3-none-any.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.9.6 requests/2.28.2 setuptools/57.5.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/3.8.15

File hashes

Hashes for dagster-1.1.10-py3-none-any.whl
Algorithm Hash digest
SHA256 8a20d6da0adba8b947fc07d62d84e468252b8137016dea60bebae4024760c056
MD5 cc20725da760238a6f8e2ed8755f2b8e
BLAKE2b-256 16b179cb7600373b73b3dd22253c74b03d77be3dfb8583042398225d6a717bb9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page