Skip to main content

The data orchestration platform built for productivity.

Project description

dagster logo


Dagster

Dagster is an orchestrator that's designed for developing and maintaining data assets, such as tables, data sets, machine learning models, and reports.

You declare functions that you want to run and the data assets that those functions produce or update. Dagster then helps you run your functions at the right time and keep your assets up-to-date.

Dagster is built to be used at every stage of the data development lifecycle - local development, unit tests, integration tests, staging environments, all the way up to production.

If you're new to Dagster, we recommend reading about its core concepts or learning with the hands-on tutorial.

An asset graph defined in Python:

from dagster import asset
from pandas import DataFrame, read_html, get_dummies
from sklearn.linear_model import LinearRegression

@asset
def country_populations() -> DataFrame:
    df = read_html("https://tinyurl.com/mry64ebh")[0]
    df.columns = ["country", "continent", "rg", "pop2018", "pop2019", "change"]
    df["change"] = df["change"].str.rstrip("%").str.replace("−", "-").astype("float")
    return df

@asset
def continent_change_model(country_populations: DataFrame) -> LinearRegression:
    data = country_populations.dropna(subset=["change"])
    return LinearRegression().fit(
        get_dummies(data[["continent"]]), data["change"]
    )

@asset
def continent_stats(
    country_populations: DataFrame, continent_change_model: LinearRegression
) -> DataFrame:
    result = country_populations.groupby("continent").sum()
    result["pop_change_factor"] = continent_change_model.coef_
    return result

The graph loaded into Dagster's web UI:

image

Installation

Dagster is available on PyPI and officially supports Python 3.7+.

pip install dagster dagit

This installs two modules:

  • Dagster: The core programming model.
  • Dagit: The web interface for developing and operating Dagster jobs and assets.

Documentation

You can find the full Dagster documentation here.

Community

Connect with thousands of other data practitioners building with Dagster. Share knowledge, get help, and contribute to the open-source project. To see featured material and upcoming events, check out our Dagster Community page.

Join our community here:

Contributing

For details on contributing or running the project for development, check out our contributing guide.

License

Dagster is Apache 2.0 licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dagster-1.1.18.tar.gz (931.7 kB view details)

Uploaded Source

Built Distribution

dagster-1.1.18-py3-none-any.whl (1.2 MB view details)

Uploaded Python 3

File details

Details for the file dagster-1.1.18.tar.gz.

File metadata

  • Download URL: dagster-1.1.18.tar.gz
  • Upload date:
  • Size: 931.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.9.6 requests/2.28.2 setuptools/57.5.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/3.8.16

File hashes

Hashes for dagster-1.1.18.tar.gz
Algorithm Hash digest
SHA256 68e24f06be4fab583f9ec4498c27c503ede8e61a258dda76dbcec74ff2b3e7e0
MD5 6edfe64978adb6574b85d97cc0de212c
BLAKE2b-256 72750ef3686865d92265dc03bb0eedad7c0394e6ddf6e21c2fa0fb25384e6fb8

See more details on using hashes here.

File details

Details for the file dagster-1.1.18-py3-none-any.whl.

File metadata

  • Download URL: dagster-1.1.18-py3-none-any.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.9.6 requests/2.28.2 setuptools/57.5.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/3.8.16

File hashes

Hashes for dagster-1.1.18-py3-none-any.whl
Algorithm Hash digest
SHA256 d904fd62d8bec55256b5f800e10ee19474920973a621244271b09e4777c7457b
MD5 77318bd4499061e3d6f6056c5eb558bd
BLAKE2b-256 23536e86fd4145a5a05f42ae5f8aa2fc81fd9294c3d34f178e11000df8a1d867

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page