Skip to main content

The data orchestration platform built for productivity.

Project description

dagster logo


Dagster

Dagster is an orchestrator that's designed for developing and maintaining data assets, such as tables, data sets, machine learning models, and reports.

You declare functions that you want to run and the data assets that those functions produce or update. Dagster then helps you run your functions at the right time and keep your assets up-to-date.

Dagster is built to be used at every stage of the data development lifecycle - local development, unit tests, integration tests, staging environments, all the way up to production.

If you're new to Dagster, we recommend reading about its core concepts or learning with the hands-on tutorial.

An asset graph defined in Python:

from dagster import asset
from pandas import DataFrame, read_html, get_dummies
from sklearn.linear_model import LinearRegression

@asset
def country_populations() -> DataFrame:
    df = read_html("https://tinyurl.com/mry64ebh")[0]
    df.columns = ["country", "continent", "rg", "pop2018", "pop2019", "change"]
    df["change"] = df["change"].str.rstrip("%").str.replace("−", "-").astype("float")
    return df

@asset
def continent_change_model(country_populations: DataFrame) -> LinearRegression:
    data = country_populations.dropna(subset=["change"])
    return LinearRegression().fit(
        get_dummies(data[["continent"]]), data["change"]
    )

@asset
def continent_stats(
    country_populations: DataFrame, continent_change_model: LinearRegression
) -> DataFrame:
    result = country_populations.groupby("continent").sum()
    result["pop_change_factor"] = continent_change_model.coef_
    return result

The graph loaded into Dagster's web UI:

image

Installation

Dagster is available on PyPI and officially supports Python 3.7+.

pip install dagster dagit

This installs two modules:

  • Dagster: The core programming model.
  • Dagit: The web interface for developing and operating Dagster jobs and assets.

Documentation

You can find the full Dagster documentation here.

Community

Connect with thousands of other data practitioners building with Dagster. Share knowledge, get help, and contribute to the open-source project. To see featured material and upcoming events, check out our Dagster Community page.

Join our community here:

Contributing

For details on contributing or running the project for development, check out our contributing guide.

License

Dagster is Apache 2.0 licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dagster-1.1.19.tar.gz (939.2 kB view details)

Uploaded Source

Built Distribution

dagster-1.1.19-py3-none-any.whl (1.2 MB view details)

Uploaded Python 3

File details

Details for the file dagster-1.1.19.tar.gz.

File metadata

  • Download URL: dagster-1.1.19.tar.gz
  • Upload date:
  • Size: 939.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.9.6 requests/2.28.2 setuptools/57.5.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/3.8.16

File hashes

Hashes for dagster-1.1.19.tar.gz
Algorithm Hash digest
SHA256 bfce26bd885053ba3995543df07ec39aa5ddab7a7a6ab601ddc861aad01cacc1
MD5 f71bc30ec28dc479b7f76f1f14f59941
BLAKE2b-256 07ff64a0fa6f2fe36785ec87dc1c075f1cd54c466db0eaf68efc24ae9a11607a

See more details on using hashes here.

File details

Details for the file dagster-1.1.19-py3-none-any.whl.

File metadata

  • Download URL: dagster-1.1.19-py3-none-any.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.9.6 requests/2.28.2 setuptools/57.5.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/3.8.16

File hashes

Hashes for dagster-1.1.19-py3-none-any.whl
Algorithm Hash digest
SHA256 5166ebb478e301366537aff7c7e56dc71ceb12ed100c336186cff4cfbb622090
MD5 4267ef694247034584fad82fdf2d8fe1
BLAKE2b-256 c93cb5f7cfdb85e6e3bfc6f47400ec56ae33f2ea8cf0118661719de929b4c759

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page