Skip to main content

Utility to help colorblind people by providing color filters and highlighting tools.

Project description

DaltonLens-Python

Unit Tests

This python package is a companion to the desktop application DaltonLens. Its main goal is to help the research and development of better color filters for people with color vision deficiencies. The current features include:

  • Simulate color vision deficiencies using the Viénot 1999, Brettel 1997 or Machado 2009 models.
  • Provide conversion functions to/from sRGB, linear RGB and LMS
  • Implement several variants of the LMS model
  • Generate Ishihara-like test images

Install

python3 -m pip install daltonlens

How to use

From the command line

daltonlens-python --help
usage: daltonlens-python [-h] [--model MODEL] [--filter FILTER] [--deficiency DEFICIENCY] [--severity SEVERITY] input_image output_image

Toolbox to simulate and filter color vision deficiencies.

positional arguments:
  input_image           Image to process.
  output_image          Output image

optional arguments:
  -h, --help            show this help message and exit
  --model MODEL, -m MODEL
                        Color model to apply: vienot, brettel, machado or auto (default: auto)
  --filter FILTER, -f FILTER
                        Filter to apply: simulate or daltonize. (default: simulate)
  --deficiency DEFICIENCY, -d DEFICIENCY
                        Deficiency type: protan, deutan or tritan (default: protan)
  --severity SEVERITY, -s SEVERITY
                        Severity between 0 and 1 (default: 1.0)

From code

from daltonlens import convert, simulate, generate
import PIL
import numpy as np

# Generate a test image that spans the RGB range
im = np.asarray(PIL.Image.open("test.png").convert('RGB'))

# Create a simulator using the Viénot 1999 algorithm.
simulator = simulate.Simulator_Vienot1999()

# Apply the simulator to the input image to get a simulation of protanomaly
protan_im = simulator.simulate_cvd (im, simulate.Deficiency.PROTAN, severity=0.8)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

daltonlens-0.1.2.tar.gz (23.4 kB view details)

Uploaded Source

Built Distribution

daltonlens-0.1.2-py3-none-any.whl (24.2 kB view details)

Uploaded Python 3

File details

Details for the file daltonlens-0.1.2.tar.gz.

File metadata

  • Download URL: daltonlens-0.1.2.tar.gz
  • Upload date:
  • Size: 23.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for daltonlens-0.1.2.tar.gz
Algorithm Hash digest
SHA256 2f9ff0e22c4004a901b5b061de6e04f2bba3b2f92a3a135a9538c3cdbba49c55
MD5 1b96f4fea4d5f1cd00bb21679d606b0f
BLAKE2b-256 0ab0c49789836c3f6acbe875ba39f74a4c464933e81a896bc09531e14dca5b25

See more details on using hashes here.

File details

Details for the file daltonlens-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: daltonlens-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 24.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for daltonlens-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 79d5e4f8ebb3daffcbafb8b1cf72b6fd41dda114b71a0297e0ab19a5ca85511e
MD5 83db85d3412225a6617dae13ed351867
BLAKE2b-256 f81c9b6148010d67cbe1ad0cf47d275dd881243987d649a151905e93b26df140

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page