Dalys
Project description
Dalys - library for visualising data analysis algorithms
Dalys - library that allows to visualize many algorithms that need for statistical data processing and machine learning
Getting Started
Dalys is a wrapper over the library scikit-learn and you can use scikit-learn datasets for visualize desired algorithm.
Example:
from sklearn.datasets import make_circles
from dalys.kernel_pca import KPCATool
X, y = make_circles(n_samples=1000, random_state=123, noise=0.1, factor=0.2)
style = [('red', '.'), ('blue', '.')]
label_names = ['red dotes', 'blue dotes']
kpca = KPCATool(X, y, style=style, labels_unique_name=label_names, n_components=3,
kernel='rbf', gamma=2, scaled=True)
kpca.projections_plot(grid=22)
There is a number of parameters that can be set for the KPCATool class; the major ones are as follows:
-
style - set marker styles and colors for data representation, example: style = [('red', '.'), ('blue', '.')] or style = [('red', 'd'), ('blue', 'd')]. If you need random colors and markers - leave this argument with default parameter (default = None).
-
labels_unique_name - set list with class names, such as labels_unique_name = ['red dotes', 'blue dotes']. If labels_unique_name is None, this means that labels will be numbered in ascending order (default = None).
-
preprocessing - for use data preprocessing, set this parameter to one of the following options (default = 'std'):
- std - standardize features
- norm_l1 - L1 normalization
- norm_l2 - L2 normalization
- minmax - MinMax scaler
- maxabs - MaxAbs scaler
-
scaled - this flag need to control preprocessing of your data, if your data is allready processed, you must set "True".
Installing
pip install dalys
Authors
- Timothy Tkachenko - Machine Learning Researcher
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file dalys-4.1.0.tar.gz
.
File metadata
- Download URL: dalys-4.1.0.tar.gz
- Upload date:
- Size: 6.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.55.0 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 94f6ed86cc98afd5cb8fef4332cc14247243c64284e30cd1b9aa80f02d3f6262 |
|
MD5 | cb711e71abba619e47de0d1ddb72d1d9 |
|
BLAKE2b-256 | a03ba1546f8f8595be2e277b2104ce25306794b472a239de1799766160731058 |
File details
Details for the file dalys-4.1.0-py3-none-any.whl
.
File metadata
- Download URL: dalys-4.1.0-py3-none-any.whl
- Upload date:
- Size: 7.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.55.0 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1cb4f05354abe08c49c43f5ac95ee7a2063e1d1a1695e76dffceac5244fc981d |
|
MD5 | 70ee50d7d7f3642cd21b1bcd73ef2b79 |
|
BLAKE2b-256 | 770d35dc9ea59fc08ffe96b69d4a21a67fe4aa56703af24e1b2bf52705b0dedd |