SDK for Damoov's APIs
Project description
Damoov-Admin Python SDK for Telematics API and Services
Damoov is a leading telematics platform leveraging smartphone capabilities to capture and analyze driving behaviors. Our Python SDK is designed to enable developers to easily integrate and harness the power of Damoov's robust telematics data.
Changelog
version 0.9.6 Release data 08.09.2024
- autopaging for trips
version 0.9.5 Release data 18.07.2024
- General improvements
- Authentication improvements
version 0.9.4 Release data 17.06.2024
- Users: New method "change_user_instance" added
version 0.9.3 Release data 11.06.2024
- Accounts: fixed issue with base url
version 0.9.2 Release data ____
- New response type for Accounts: errors - return a message of the error
- New response type for Users: accesstoken - to get JWT token
- New response type for Users: refreshtoken - to get refresh token
version 0.9.1 Release date December 28, 2023
- New method: get_user_details
- General improvements
version 0.9.0 Release date December 14, 2023
- Auth improvements.
- Iterable objects
version 0.8.0 Release date November 27, 2023
- New module available: accounts. the module includes methods to manage applications and instances
version 0.7.7 Release date 13/11/2023:
- New module available: engagement. the module includes leaderboards: general leaderboard and user leaderboard
- Authentication improvements: now, the SDK supports multiple credentials simultaneously.
- Response improvements: default response for empty or no data users.
version 0.7.6 Release date 01/11/2023:
- bug fix
version 0.7.5 Release date 25/10/2023:
- bug fix
version 0.7.4 Release date 20/10/2023:
Security Enhancements: JWT Token Storage:
- Improved Security: Moved JWT token storage from a local file to secure place, providing an added layer of security.
- Robust Token Handling: Enhanced the methods for saving and loading tokens.
Other Updates:
- Error Handling: Improved HTTP error handling across all API calls, ensuring smoother recovery and clear notifications on issues.
- Code Optimization: Refactored and optimized various parts of the codebase for clarity and performance.
Installation
Install the SDK using pip:
pip install damoov-admin
Features
- Authentication: Seamlessly authenticate and manage sessions.
- Telematics Data Retrieval: Fetch driving statistics, safety patterns, performance metrics, and more.
- Error Handling: Handle errors effectively with descriptive messages.
- Utility Functions: Set of helper functions for date and time management.
Quick Start
-
Authentication:
from damoov_admin import statistics, trips, users email = "" password = '' #Generate your admin credential in Datahub (https://docs.damoov.com/docs/datahub) data = <module>.DamoovAuth(email=email, password=password)
Documentation
Detailed documentation is available at Developer Portal.
Feedback and Support
If you have any feedback or need support, please contact us at hellp@damoov.com.
License
This SDK is distributed under the MIT License.
python-admin-sdk
Damoov's Python SDK enables seamless integration with our leading telematics platform. Harness the power of smartphones to capture and analyze driving behaviors. This repo provides tools to easily tap into driving insights, safety metrics, and performance data. Drive smarter with Damoov.
Modules
Statistics
The Statistics
module provides a comprehensive suite of functionalities to gather various statistics data, ranging from daily user scores to unique tags. Below is a breakdown of its methods and their usage:
1. Get started
If you haven't already, install the Damoov-Admin SDK for Python.
pip install damoov-admin
Begin by importing the Statistics module and finalizing the authentication process.
from damoov_admin import statistics
email="your_admin_creds@auth.me"
password="YOUR PASSWORD"
stats = statistics.DamoovAuth(email=email, password=password)
2. Methods
Syntaxes:
user_id
: ID of the user, also known as a DeviceTokenstart_date
: Start date in formatYYYY-MM-DDTHH:MM:SS
end_date
: End date in formatYYYY-MM-DDTHH:MM:SS
tag
: ['Tag1', '...', 'TagX']
user_daily_statistics
Obtain daily statistics of a user.
Parameters:
user_id
: ID of the userstart_date
: Start date in formatYYYY-MM-DDTHH:MM:SS
end_date
: End date in formatYYYY-MM-DDTHH:MM:SS
tag
(optional): Tag to filter
Example:
Request:
user_statistics=stats.user_daily_statistics(
user_id='2948a036-36f8-4f76-babd-0635874aa3er',
start_date='2023-09-01T00:00:00',
end_date='2023-10-02T00:00:00',
tag=['Business', 'Personal']
)
Response:
{"Result": [
{
"UserId": "2948a036-36f8-4f76-babd-0635874aa3er",
"InstanceId": "",
"AppId": "",
"CompanyId": "",
"ReportDate": "2023-09-02T00:00:00",
"MileageKm": 200.7945138572461,
"MileageMile": 124.77371091089272,
"TripsCount": 8,
"DriverTripsCount": 8,
"OtherTripsCount": 0,
"MaxSpeedKmh": 122.29244232177734,
"MaxSpeedMileh": 75.99252365875243,
"AverageSpeedKmh": 54.68438828527036,
"AverageSpeedMileh": 33.980878880466996,
"TotalSpeedingKm": 12.483415754279346,
"TotalSpeedingMile": 7.757194549709185,
"AccelerationsCount": 4,
"BrakingsCount": 5,
"CorneringsCount": 4,
"PhoneUsageDurationMin": 3.5368999999999997,
"PhoneUsageMileageKm": 2.2573077536862733,
"PhoneUsageMileageMile": 1.40269103814065,
"PhoneUsageSpeedingDurationMin": 0.0,
"PhoneUsageSpeedingMileageKm": 0.0,
"PhoneUsageSpeedingMileageMile": 0.0,
"DrivingTime": 186.96666666666667,
"NightDrivingTime": 0.0,
"DayDrivingTime": 45.993165254592896,
"RushHoursDrivingTime": 140.0721311569214,
"PermissionsLevel": 92,
"TrustLevel": 92.0
},
],
"Status": 200,
"Title": "",
"Errors": []
}
user_daily_ecoscore
Retrieve a user's daily ecoscore.
Parameters:
user_id
: ID of the userstart_date
: Start dateend_date
: End date
Example:
Request:
user_statistics=stats.user_daily_ecoscore(
user_id='2948a036-36f8-4f76-babd-0635874aa3er',
start_date='2023-09-01T00:00:00',
end_date='2023-10-02T00:00:00',
)
Response:
"Result": [
{
"UserId": "2948a036-36f8-4f76-babd-0635874aa3er",
"InstanceId": "",
"AppId": "",
"CompanyId": "",
"CalcDate": "2023-10-02T00:00:00",
"EcoScoreFuel": 97.80603418529739,
"EcoScoreTyres": 100.0,
"EcoScoreBrakes": 71.24604879817583,
"EcoScoreDepreciation": 30.066967347066047,
"EcoScore": 75.74524464826901,
"PermissionsLevel": 100,
"TrustLevel": 100.0
}
],
"Status": 200,
"Title": "",
"Errors": []
}
user_daily_safetyscore
Get a user's daily safety score.
Parameters:
user_id
: ID of the userstart_date
: Start dateend_date
: End datetag
(optional): Tag to filter
Example:
Request:
user_statistics=stats.user_daily_safetyscore(
user_id='2948a036-36f8-4f76-babd-0635874aa3er',
start_date='2023-09-01T00:00:00',
end_date='2023-10-02T00:00:00',
)
Response:
"Result": [
{
"UserId": "2948a036-36f8-4f76-babd-0635874aa3er",
"InstanceId": "",
"AppId": "",
"CompanyId": "",
"AccelerationScore": 78.0,
"BrakingScore": 80.0,
"SpeedingScore": 72.0,
"PhoneUsageScore": 86.0,
"CorneringScore": 79.0,
"SafetyScore": 90.0,
"CalcDate": "2023-10-02T00:00:00",
"PermissionsLevel": 100,
"TrustLevel": 100.0
}
],
"Status": 200,
"Title": "",
"Errors": []
}
user_accumulated_statistics
Fetch accumulated statistics for a user.
Parameters:
user_id
: ID of the userstart_date
: Start dateend_date
: End datetag
(optional): Tag to filter
Example:
Request:
user_statistics=stats.user_accumulated_statistics(
user_id='2948a036-36f8-4f76-babd-0635874aa3er',
start_date='2023-09-01T00:00:00',
end_date='2023-10-02T00:00:00',
)
Response:
"Result": [
{
"UserId": "2948a036-36f8-4f76-babd-0635874aa3er",
"InstanceId": "",
"AppId": "",
"CompanyId": "",
"MileageKm": 2111.0221881212033,
"MileageMile": 1311.789187698516,
"TripsCount": 153,
"DriverTripsCount": 153,
"OtherTripsCount": 0,
"MaxSpeedKmh": 122.29244232177734,
"MaxSpeedMileh": 75.99252365875243,
"AverageSpeedKmh": 43.86747108399977,
"AverageSpeedMileh": 27.25924653159745,
"TotalSpeedingKm": 144.23474761841058,
"TotalSpeedingMile": 89.6274721700803,
"AccelerationsCount": 94,
"BrakingsCount": 78,
"CorneringsCount": 45,
"PhoneUsageDurationMin": 20.447583333333334,
"PhoneUsageMileageKm": 17.025709577441788,
"PhoneUsageMileageMile": 10.579775931422326,
"PhoneUsageSpeedingDurationMin": 0.2427833333333333,
"PhoneUsageSpeedingMileageKm": 0.32201192397028167,
"PhoneUsageSpeedingMileageMile": 0.20009820955513297,
"DrivingTime": 3301.6166666666663,
"NightDrivingTime": 0.0,
"DayDrivingTime": 1807.0491929650307,
"RushHoursDrivingTime": 1490.29370367527,
"PermissionsLevel": 93,
"TrustLevel": 93.0
}
],
"Status": 200,
"Title": "",
"Errors": []
}
user_accumulated_ecoscore
Acquire a user's accumulated ecoscore over a range.
Parameters:
user_id
: ID of the userstart_date
: Start dateend_date
: End date
Example:
Request:
user_statistics.user_accumulated_ecoscore(
user_id='2948a036-36f8-4f46-babd-0635870aa7ed',
start_date='2023-09-01T00:00:00',
end_date='2023-10-02T00:00:00'
)
Response:
"Result": [
{
"UserId": "2948a036-36f8-4f76-babd-0635874aa3er",
"InstanceId": "",
"AppId": "",
"CompanyId": "",
"EcoScoreFuel": 97.21532847773788,
"EcoScoreTyres": 100.0,
"EcoScoreBrakes": 83.25091485161596,
"EcoScoreDepreciation": 26.5303907938692,
"EcoScore": 75.00759345586548,
"PermissionsLevel": 93,
"TrustLevel": 93.0
}
],
"Status": 200,
"Title": "",
"Errors": []
}
user_accumulated_safetyscore
Obtain a user's accumulated safety score.
Parameters:
user_id
: ID of the userstart_date
: Start dateend_date
: End datetag
(optional): Tag to filter
Example:
Request:
user_statistics=stats.user_accumulated_safetyscore(
user_id='2948a036-36f8-4f76-babd-0635874aa3er',
start_date='2023-09-01T00:00:00',
end_date='2023-10-02T00:00:00',
tag='')
Response:
"Result": [
{
"UserId": "2948a036-36f8-4f76-babd-0635874aa3er",
"InstanceId": "",
"AppId": "",
"CompanyId": "",
"AccelerationScore": 77.625,
"BrakingScore": 81.96875,
"SpeedingScore": 70.125,
"PhoneUsageScore": 86.46875,
"CorneringScore": 85.71875,
"SafetyScore": 89.53125,
"PermissionsLevel": 93,
"TrustLevel": 93.0
}
],
"Status": 200,
"Title": "",
"Errors": []
entity_accumulated_ecoscore
Retrieve the accumulated ecoscore for an entity.
Parameters:
start_date
: Start dateend_date
: End datetag
(optional): Tag to filter- One of the following must be provided:
instance_id
: Instance IDapp_id
: Application IDcompany_id
: Company ID
Example:
Request:
instance_statistics=stats.entity_accumulated_ecoscore(
start_date='2023-09-01T00:00:00',
end_date='2023-10-02T00:00:00',
instance_id="your_instance_id",
)
Response:
"Result": {
"UserId": null,
"InstanceId": "your_instance_id",
"AppId": null,
"CompanyId": null,
"EcoScoreFuel": 97.52329737487166,
"EcoScoreTyres": 100.0,
"EcoScoreBrakes": 75.59935000534821,
"EcoScoreDepreciation": 44.719564784133794,
"EcoScore": 80.30344045080935,
"PermissionsLevel": 94,
"TrustLevel": 94.0
},
"Status": 200,
"Title": "",
"Errors": []
entity_daily_statistics
Fetch daily statistics for an entity.
Parameters:
start_date
: Start dateend_date
: End datetag
(optional): Tag to filter- One of the following must be provided:
instance_id
: Instance IDapp_id
: Application IDcompany_id
: Company ID
Example:
Request:
company_d_statistics=stats.entity_daily_statistics(
start_date='2023-09-01T00:00:00',
end_date='2023-10-02T00:00:00',
company_id='your_company_id'
)
Response:
"Result": [
{
"InstanceId": null,
"AppId": null,
"CompanyId": "your_company_id",
"ReportDate": "2023-09-18T00:00:00",
"RegisteredUsers": 12,
"ActiveUsers": 282,
"MileageKm": 25382.13108184097,
"MileageMile": 15772.456254255985,
"TripsCount": 1789,
"DriverTripsCount": 1786,
"OtherTripsCount": 3,
"MaxSpeedKmh": 146.1915283203125,
"MaxSpeedMileh": 90.84341569824218,
"AverageSpeedKmh": 36.002057830035696,
"AverageSpeedMileh": 22.371678735584183,
"TotalSpeedingKm": 560.9847620514762,
"TotalSpeedingMile": 348.595931138787,
"AccelerationsCount": 1139,
"BrakingsCount": 1326,
"CorneringsCount": 1474,
"PhoneUsageDurationMin": 3800.4465833333334,
"PhoneUsageMileageKm": 2284.020002380001,
"PhoneUsageMileageMile": 1419.290029478932,
"PhoneUsageSpeedingDurationMin": 12.098366666666667,
"PhoneUsageSpeedingMileageKm": 10.980101468687467,
"PhoneUsageSpeedingMileageMile": 6.823035052642389,
"DrivingTime": 35077.866666666676,
"NightDrivingTime": 1351.4007195532322,
"DayDrivingTime": 21381.867682458833,
"RushHoursDrivingTime": 12418.06661722064,
"PermissionsLevel": 95,
"TrustLevel": 95.0
},
],
"Status": 200,
"Title": "",
"Errors": []
}
entity_safety_score
Obtain safety score for an entity.
Parameters:
start_date
: Start dateend_date
: End datetag
(optional): Tag to filter- One of the following must be provided:
instance_id
: Instance IDapp_id
: Application IDcompany_id
: Company ID
Example:
Request:
instance_statistics=stats.entity_daily_safetyscore(
start_date='2023-09-20T00:00:00',
end_date='2023-10-02T00:00:00',
app_id="your_app_id",
)
Response:
"Result": [
{
"InstanceId": null,
"AppId": "your_app_id",
"CompanyId": null,
"ReportDate": "2023-10-02T00:00:00",
"AccelerationScore": 76.99007444168734,
"BrakingScore": 76.41935483870968,
"SpeedingScore": 90.21339950372209,
"PhoneUsageScore": 74.04466501240695,
"CorneringScore": 74.01488833746899,
"SafetyScore": 83.22332506203475,
"PermissionsLevel": 95,
"TrustLevel": 95.0
}
],
"Status": 200,
"Title": "",
"Errors": []
}
entity_accumulated_statistics
Get accumulated statistics for an entity.
Parameters:
start_date
: Start dateend_date
: End datetag
(optional): Tag to filter- One of the following must be provided:
instance_id
: Instance IDapp_id
: Application IDcompany_id
: Company ID
Example:
Request:
company_statistics=stats.entity_accumulated_statistics(
start_date='2023-09-01T00:00:00',
end_date='2023-10-02T00:00:00',
company_id='your_company_id'
)
Response
{
"Result": {
"InstanceId": null,
"AppId": null,
"CompanyId": "your_company_id",
"TotalRegisteredUsers": 299,
"ActiveUsers": 491,
"MileageKm": 765112.3461886081,
"MileageMile": 475440.8119216011,
"TripsCount": 47429,
"DriverTripsCount": 47200,
"OtherTripsCount": 229,
"MaxSpeedKmh": 235.80712890625,
"MaxSpeedMileh": 146.53054990234375,
"AverageSpeedKmh": 37.49730203560512,
"AverageSpeedMileh": 23.300823484925015,
"TotalSpeedingKm": 18645.076059143215,
"TotalSpeedingMile": 11586.050263151588,
"AccelerationsCount": 31278,
"BrakingsCount": 39863,
"CorneringsCount": 40161,
"PhoneUsageDurationMin": 117555.1976166667,
"PhoneUsageMileageKm": 67128.67055363058,
"PhoneUsageMileageMile": 41713.75588202606,
"PhoneUsageSpeedingDurationMin": 347.51840000000016,
"PhoneUsageSpeedingMileageKm": 357.2293322990894,
"PhoneUsageSpeedingMileageMile": 221.98230709065405,
"DrivingTime": 1014552.5333333339,
"NightDrivingTime": 43901.92194293812,
"DayDrivingTime": 636574.804801112,
"RushHoursDrivingTime": 341089.71085665515,
"PermissionsLevel": 95,
"TrustLevel": 95.0
},
"Status": 200,
"Title": "",
"Errors": []
}
entity_daily_safetyscore
Fetch daily safety score for an entity.
Parameters:
start_date
: Start dateend_date
: End datetag
(optional): Tag to filter- One of the following must be provided:
instance_id
: Instance IDapp_id
: Application IDcompany_id
: Company ID
Example:
Request:
app_statistics=stats.entity_daily_safetyscore(
start_date='2023-09-01T00:00:00',
end_date='2023-10-02T00:00:00',
app_id="your_app_id",
)
Response:
"Result": [
{
"InstanceId": null,
"AppId": "your_app_id",
"CompanyId": null,
"ReportDate": "2023-10-02T00:00:00",
"AccelerationScore": 76.99007444168734,
"BrakingScore": 76.41935483870968,
"SpeedingScore": 90.21339950372209,
"PhoneUsageScore": 74.04466501240695,
"CorneringScore": 74.01488833746899,
"SafetyScore": 83.22332506203475,
"PermissionsLevel": 95,
"TrustLevel": 95.0
},
],
"Status": 200,
"Title": "",
"Errors": []
}
lastupdates
Get the last updates for a user.
Parameters:
user_id
: ID of the user
Example:
Request:
metadata=stats.lastupdates(
user_id='2948a036-36f8-4f46-babd-0635870aa7ed'
)
Response:
{
"Result": [
{
"UserId": "your_user_id",
"InstanceId": "your_instance_id",
"AppId": "your_app_id",
"CompanyId": "your_company_id",
"LatestTripDate": "2023-10-11T14:33:40+01:00",
"LatestScoringDate": "2023-10-11T00:00:00"
}
],
"Status": 200,
"Title": "",
"Errors": []
}
uniquetags
Obtain unique tags for a user within a specific range.
Parameters:
user_id
: ID of the userstart_date
: Start dateend_date
: End date
Example:
Request:
metadata=stats.uniquetags(
user_id='2948a036-36f8-4f46-babd-0635870aa7ed',
start_date='2023-09-01T00:00:00',
end_date='2023-10-02T00:00:00',
)
Response:
{
"Result": {
"UniqueTagsCount": 2,
"UniqueTagsList": [
"your_tag_1",
"your_tag_x"
]
},
"Status": 200,
"Title": "",
"Errors": []
}
4. Note
- In all methods, if there's a
HTTPError
, the error will be printed, and the response will be handled accordingly. - For daily statistics, scores, and list of trips, the methods automatically modify the requested period to 14 days if the original request spans a period longer than that.
5. Response
The Statistics Response
processes and provides easy access to specific parts of the data returned by the Statistics
module. Here's a detailed breakdown of its properties and methods:
result
Provides the 'Result' from the response. If the result is a list with a single item, it returns that item. Otherwise, it returns the full list or results.
Return Type: dict
or list
status
Returns the 'Status' from the response.
Return Type: dict
title
Returns the 'Title' of the response.
Return Type: str
errors
Fetches any 'Errors' from the response.
Return Type: list
latest_trip_date
Provides the 'LatestTripDate' from the result.
Return Type: Depends on data (e.g., str
, None
)
latest_scoring_date
Retrieves the 'LatestScoringDate' from the result.
Return Type: Depends on data (e.g., str
, None
)
tags_count
Gives the 'UniqueTagsCount' from the result.
Return Type: Depends on data (e.g., int
, None
)
tags_list
Fetches the 'UniqueTagsList' from the result.
Return Type: Depends on data (e.g., list
, None
)
5. Usage
After you fetch data using methods from the Statistics
module, you can pass the returned data to StatisticsResponse
to further process and easily access specific parts of the response.
# Import and initial initialization
from damoov_admin import statistics
email="your_admin_creds@auth.me"
password="YOUR PASSWORD"
stats = statistics.DamoovAuth(email=email, password=password)
# Methods to fetch user statistics and scores
app_statistics=stats.entity_daily_safetyscore(
start_date='2023-09-01T00:00:00',
end_date='2023-10-02T00:00:00',
app_id="your_app_id",
)
print(app_statistics)
print(app_statistics.status)
print(app_statistics.result)
metadata=stats.uniquetags(
user_id='2948a036-36f8-4f46-babd-0635870aa7ed',
start_date='2023-09-01T00:00:00',
end_date='2023-10-02T00:00:00',
)
print(metadata.tags_list)
print(metadata.tags_count)
metadata=stats.lastupdates(
user_id='2948a036-36f8-4f46-babd-0635870aa7ed'
)
print(metadata.latest_trip_date)
print(metadata.latest_scoring_date)
Trips
The Trips
module offers a robust set of functionalities designed for efficient trip data management. This encompasses a range of operations from fetching trip details, updating trip
1. Get started
If you haven't already, install the Damoov-Admin SDK for Python.
pip install damoov-admin
Begin by importing the User management module and finalizing the authentication process.
from damoov_admin import trips
email="your_admin_creds@auth.me"
password="YOUR PASSWORD"
trips_mngt = trips.DamoovAuth(email=email, password=password)
2. Methods
The Trips
module offers a robust set of functionalities tailored for managing and fetching trip-related data. Here's a comprehensive breakdown of its methods and their usage:
Syntaxes:
sort_by
: Sort parameter (e.g., "StartDateUtc, StartDateUtc_Desc").unit_system
: Measurement unit system (e.g., "Si" or "Imperial")user_id
: ID of the user/ DeviceToken whose trips are to be fetched.start_date
,end_date
: Date range for the trip in formatYYYY-MM-DDTHH:MM:SS
start_date_timestamp_sec
,end_date_timestamp_sec
: Alternative date range using timestamps.include_details
: Include detailed trip data, like start, end address, transportation type, and tagsinclude_statistics
: Include statistics related to the trip.include_scores
: Include scores associated with the trip.include_waypoints
: Include per-second GPS waypoints of the trip.include_events
: Include events or incidents associated with the trip.include_related
: Include related trip data, including URI for future get requests.tags_included
: Tags to be included in the filtering.tags_excluded
: Tags to be excluded in the filtering.limit
: Limit the number of trips returned.
get_list_trips
Fetches the list of trips for a specific user, with various optional filters to refine the result set.
- Parameters:
user_id
: Requiredstart_date
,end_date
: Required.start_date_timestamp_sec
,end_date_timestamp_sec
include_details
include_statistics
include_scores
include_related
tags_included
tags_excluded
:unit_system
sort_by
limit
Example:
Request
user_trip_details=trip.get_list_trips(
user_id='user_id',
# start_date='2023-09-09',
# end_date='2023-10-10',
start_date_timestamp_sec=1696704060,
end_date_timestamp_sec=1696713840,
sort_by='StartDateUtc',
include_details=False,
include_statistics=False,
include_scores=False,
include_related=True,
tags_included=None,
tags_excluded=None,
locale="EN",
unit_system="Imperial",
# limit=3
)
Response
{
"Result": {
"Trips": [
{
"Id": "trip_id",
"DateUpdated": "2022-09-10T12:29:25+00:00",
"Identifiers": {
"CompanyId": "company_id",
"ApplicationId": "application_id",
"InstanceId": "instance_id",
"UserId": "user_id"
},
"Data": {
"StartDate": "2022-09-10T12:20:25+00:00",
"EndDate": "2022-09-10T12:29:25+00:00",
"UnitSystem": "Imperial",
"Addresses": {
"Start": {
"Full": "102 Beach St, San Francisco, CA 94133-1101, United States",
"Parts": {
"CountryCode": "USA",
"Country": "United States",
"County": "San Francisco",
"State": "California",
"City": "San Francisco",
"District": "Fisherman's Wharf",
"Street": "Beach St",
"House": "102"
}
},
"End": {
"Full": "E Beach, San Francisco, CA 94129, United States",
"Parts": {
"CountryCode": "USA",
"Country": "United States",
"County": "San Francisco",
"State": "California",
"City": "San Francisco",
"District": "Presidio",
"Street": "E Beach"
}
}
},
"TransportType": {
"Current": "OriginalDriver",
"ConfirmNeeded": false
},
"Tags": []
},
"Statistics": {
"Mileage": 4.143953744168464,
"DurationMinutes": 17.183333333333334,
"AccelerationsCount": 0.0,
"BrakingsCount": 0.0,
"CorneringsCount": 1.0,
"TotalSpeedingMileage": 0.0,
"MidSpeedingMileage": 0.0,
"HighSpeedingMileage": 0.0,
"PhoneUsageDurationMinutes": 11.989366666666665,
"PhoneUsageMileage": 3.5955679069262994,
"PhoneUsageWithSpeedingDurationMinutes": 0.0,
"PhoneUsageWithSpeedingMileage": 0.0,
"DayHours": 17.233333587646484,
"RushHours": 0.0,
"NightHours": 0.0,
"AverageSpeed": 11.416121791501084,
"MaxSpeed": 19.790273235742262
},
"Scores": {
"Safety": 97.0,
"Acceleration": 100.0,
"Braking": 100.0,
"Cornering": 56.0,
"Speeding": 100.0,
"PhoneUsage": 40.0,
"Eco": 77.0,
"EcoBrakes": 100.0,
"EcoDepreciation": 25.0,
"EcoFuel": 100.0,
"EcoTyres": 100.0
},
"Related": [
{
"Type": "Waypoints",
"Uri": "https://api.telematicssdk.com/trips/get/admin/v1/trip_id/waypoints"
},
{
"Type": "Trip",
"Uri": "https://api.telematicssdk.com/trips/get/v1/trip_id"
}
]
}
]
},
"Status": 200,
"Title": "",
"Errors": []
}
get_trip_details
Retrieves waypoint details of a specific trip by its unique ID.
- Parameters:
trip_id
: (Required)user_id
: (Required)include_details
: Include detailed trip data.include_statistics
: Include statistics related to the trip.include_scores
: Include scores associated with the trip.include_waypoints
: Include waypoints of the trip.include_events
: Include events associated with the trip.include_related
: Include related trip data.locale
: Locale settings (e.g., "EN").unit_system
: Measurement unit system (e.g., "Si" or "Imperial").
Example:
Request
trip_details = trip.get_trip_details(
trip_id="trip_id",
user_id="user_id",
include_details=True,
include_statistics=True,
include_scores=True,
include_waypoints=True,
include_events=True,
include_related=True,
locale="EN",
unit_system="Imperial"
)
Response
{
"Result": {
"Trip": {
"Id": "trip_id",
"DateUpdated": "2023-10-11T07:34:31+00:00",
"Identifiers": {
"CompanyId": "company_id",
"ApplicationId": "application_id",
"InstanceId": "instance_id",
"UserId": "user_id"
},
"Data": {
"StartDate": "2023-10-09T08:19:23+01:00",
"StartDateUnixMilliseconds": 1696835963000,
"EndDate": "2023-10-09T08:36:44+01:00",
"EndDateUnixMilliseconds": 1696837004000,
"UnitSystem": "Imperial",
"Addresses": {
"Start": {
"Full": "Avenida Marechal Gomes da Costa 17, 1800-253 Lisbon, Portugal",
"Parts": {
"CountryCode": "PRT",
"Country": "Portugal",
"County": "Lisbon",
"City": "Lisbon",
"District": "Lisbon",
"Street": "Avenida Marechal Gomes da Costa",
"House": "17"
}
},
"End": {
"Full": "Rua do Arco do Cego 177, 1000-020 Lisbon, Portugal",
"Parts": {
"CountryCode": "PRT",
"Country": "Portugal",
"County": "Lisbon",
"City": "Lisbon",
"District": "Lisbon",
"Street": "Rua do Arco do Cego",
"House": "177"
}
}
},
"TransportType": {
"Current": "OriginalDriver",
"ConfirmNeeded": true
},
"Tags": []
},
"Statistics": {
"Mileage": 3.111590678261461,
"DurationMinutes": 17.35,
"AccelerationsCount": 1.0,
"BrakingsCount": 0.0,
"CorneringsCount": 0.0,
"TotalSpeedingMileage": 0.021650736620396006,
"MidSpeedingMileage": 0.06389130188092126,
"HighSpeedingMileage": 0.0,
"PhoneUsageDurationMinutes": 0.0,
"PhoneUsageMileage": 0.0,
"PhoneUsageWithSpeedingDurationMinutes": 0.0,
"PhoneUsageWithSpeedingMileage": 0.0,
"DayHours": 0.0,
"RushHours": 17.270366668701172,
"NightHours": 0.0,
"AverageSpeed": 20.500146429454027,
"MaxSpeed": 47.186389247420195
},
"Scores": {
"Safety": 79.0,
"Acceleration": 53.0,
"Braking": 100.0,
"Cornering": 100.0,
"Speeding": 48.0,
"PhoneUsage": 100.0,
"Eco": 91.0,
"EcoBrakes": 100.0,
"EcoDepreciation": 75.0,
"EcoFuel": 98.94907,
"EcoTyres": 100.0
},
"Waypoints": [
{
"Index": 0,
"SecSinceStart": 0,
"PointDateUnixMilliseconds": 0,
"Lat": 0,
"Long": 0,
"Speed": 0,
"SpeedLimit": 0,
"Speeding":status ,
"PhoneUsage": true
}
],
"Events": [
{
"Id": "",
"Type": "Acceleration",
"Date": "2023-10-09T08:22:10+01:00",
"Lat": 38.74998,
"Long": -9.10616,
"Value": 3.353325366973877
}
],
"Related": [
{
"Type": "Waypoints",
"Uri": "https://api.telematicssdk.com/trips/get/admin/v1/300665e1-e415-46ab-892f-1cd25afd650d/waypoints"
}
]
}
},
"Status": 200,
"Title": "",
"Errors": []
}
3. Note
- In all methods, if there's a
HTTPError
, the error will be printed, and the response will be handled accordingly. - For daily statistics, scores, and list of trips, the methods automatically modify the requested period to 14 days if the original request spans a period longer than that.
4. Response
The TripsResponse
processes and provides easy access to specific parts of the data returned by the Trips
module. Here's a detailed breakdown of its properties:
result
Returns the 'Result' part from the response.
Return Type: dict
trips
Provides the list of 'Trip' items from the response. If the result is not a list, an empty list is returned.
Return Type: list
statistics
Provides the 'Statistics' information for a trip.
Return Type: dict
details
Returns the detailed data for the 'Trip'.
Return Type: dict
transporttype
Provides the 'TransportType' information for a trip.
Return Type: dict
scores
Returns the 'Scores' for the trip.
Return Type: dict
events
Provides the 'Events' for the trip.
Return Type: dict
waypoints
Returns the 'Waypoints' for the trip.
Return Type: dict
paging_info
Provides the paging information if available.
Return Type: dict
status
Returns the 'Status' from the response.
Return Type: dict
datetime
Provides the 'Data' (usually representing datetime) from the response.
Return Type: dict
trip_id
Returns the unique ID for the trip.
Return Type: Depends on data (e.g., str
, None
)
5. Usage
After making calls to the Trips
module to retrieve trip-related data, you can pass the returned data to TripsResponse
to further process and easily access specific parts of the response.
# Import and initial initialization
from damoov_admin import trips
email="your_admin_creds@auth.me"
password="YOUR PASSWORD"
trips_mngt = trips.DamoovAuth(email=email, password=password)
# Method to get a list of trips for selected period of time
user_trip_details=trip.get_list_trips(
user_id='7623f515-b867-4325-bc63-3a0248d4f774',
# start_date='2023-09-09',
# end_date='2023-10-10',
start_date_timestamp_sec=1696704060,
end_date_timestamp_sec=1696713840,
sort_by='StartDateUtc',
tags_included=['Business'],
include_details=True,
include_statistics=True,
include_scores=True,
include_related=True,
locale="EN",
unit_system="Imperial",
limit=1
)
print('status: ', user_trip_details.status)
print('details: ', user_trip_details.details)
print('trips: ',user_trip_details.trips)
print('trip id: ',user_trip_details.trip_id)
print('date and time: ', user_trip_details.datetime)
print(user_trip_details.paging_info)
print(user_trip_details) # prints full response in JSON format
# Methods to fetch trip details, including waypoints, for a specific trip ID.
trip_details = trip_mngt.get_trip_details(
trip_id="trip_id",
user_id="user_id",
include_details=True,
include_statistics=True,
include_scores=True,
include_waypoints=True,
include_events=True,
include_related=True,
locale="EN",
unit_system="Imperial"
)
print(trip_details) # prints full response in JSON format
print('Status: ', trip_details.status)
print('Result: ',trip_details.result)
print('Statistics: ',trip_details.statistics)
print('Scores: ',trip_details.scores)
print('Events: ',trip_details.events)
print('Waypoints: ',trip_details.waypoints)
print('Details: ',trip_details.details)
print('Transportation mode: ',trip_details.transporttype)
Users
The Users
module provides a comprehensive suite of functionalities to manage user data effectively, ranging from user creation, updates, to deletions. Below is a breakdown of its methods and their usage:
1. Get started
If you haven't already, install the Damoov-Admin SDK for Python.
pip install damoov-admin
Begin by importing the User management module and finalizing the authentication process.
from damoov_admin import users
email="your_admin_creds@auth.me"
password="YOUR PASSWORD"
user_mngt = users.DamoovAuth(email=email, password=password)
2. Methods
Syntaxes:
instanceid
: The instance ID for the user.instancekey
: The instance Key for the user.ClientId
: A unique identifier assigned by the client for the user.FirstName
: First name of the user.LastName
: Last name of the user.Nickname
: Nickname for the user.Phone
: Phone number of the user.Email
: Email address of the user.CreateAccessToken
: If set to True, a user's access token will be created.
create_user
Creates a new user based on the given parameters.
Parameters
instanceid
: Required.instancekey
: Required.FirstName
: Optional.LastName
: Optional.Nickname
: Optional.Phone
: Optional.Email
: Optional.ClientId
: Optional.CreateAccessToken
: Optional.
Example:
Request:
new_user=users_mgnt.create_user(
instanceid='your_instance_id',
instancekey='your_instance_key',
FirstName='FirstName',
LastName='LastName',
Nickname='Nickname',
Phone='123456789',
)
Response:
📘 DeviceToken is an old name for UserId
{
"Result": {
"DeviceToken": "user_devicetoken/userid", // DeviceToekn is the same as UserId
"AccessToken": null,
"RefreshToken": null
},
"Status": 200,
"Title": "",
"Errors": []
}
update_user
Updates user details based on the given parameters.
Parameters
userid
: Required. User's unique identifier.ClientId
: Optional. Client ID for the user.FirstName
: Optional. Updated first name of the user.LastName
: Optional. Updated last name of the user.Nickname
: Optional. Updated nickname for the user.Phone
: Optional. Updated phone number of the user.Email
: Optional. Updated email address of the user.
Example:
Request:
user=users_mgnt.update_user(
userid='User_Id',
FirstName='Tim',
LastName='Plumber',
Nickname='Tim-tim',
Phone='123456789',
ClientId='12-34-56789'
)
Response:
{
"Status": 200,
"Title": "",
"Errors": []
}
delete_user
Parameters:
Example:
Request:
delete_user=users_mgnt.delete_user(
userid='User_devicetoken/userid'
)
Response:
{
"Status": 200,
"Title": "",
"Errors": []
}
3. Note
- In all methods, if there's a HTTPError, the error will be printed, and the response will be handled accordingly.
4. Response
The UsersResponse
class is tailored to process and provide convenient access to specific parts of the data returned from user-related operations. Here's an in-depth breakdown of its properties and methods:
devicetoken
Returns the DeviceToken
from the response's Result
section. It provides the device token/ UseId associated with the user.
Return Type: Depends on data (e.g., str
, None
)
userid
Returns the user ID from the response's Result
section. It provides the device token/ UseId associated with the user.
Return Type: Depends on data (e.g., str
, None
)
status
Extracts the 'Status' of the response. This typically indicates the success or failure of the operation and might contain relevant status codes or messages.
Return Type: dict
5. Usage
After conducting operations related to users, you can pass the returned data to UsersResponse
to further process and effortlessly access specific parts of the response.
# Import and initial initialization
from damoov_admin import users
email="your_admin_creds@auth.me"
password="YOUR PASSWORD"
user_mngt = users.DamoovAuth(email=email, password=password)
# Use methods to create and manage users
new_user=users.create_user(
instanceid='your_instance_id',
instancekey='your_instance_key',,
)
print(new_user)
print(new_user.devicetoken)
print(new_user.status)
print(new_user.userid)
user=users_mgnt.update_user(
userid='User_Id',
FirstName='Tim',
LastName='Plumber',
Nickname='Tim-tim',
Phone='123456789',
ClientId='12-34-56789'
)
print(user)
print(user.status)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file damoov_admin-0.9.6.tar.gz
.
File metadata
- Download URL: damoov_admin-0.9.6.tar.gz
- Upload date:
- Size: 38.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 31912c6401d0772cc3c88e0dde307a1342ea893c9f5e5b3beb510c54430e9d31 |
|
MD5 | 272a8ea15197ec1e72032cbd040f2cea |
|
BLAKE2b-256 | 4bdbf7329017a7c5ae85f866bd57a676621c5549761db1a6537f7a439bf63025 |
File details
Details for the file damoov_admin-0.9.6-py3-none-any.whl
.
File metadata
- Download URL: damoov_admin-0.9.6-py3-none-any.whl
- Upload date:
- Size: 25.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7c84077459ddca0c20dcbbc0cceb9ec2883e4cf7d3aaf217f8ae479003a0db55 |
|
MD5 | f7c8cdcbcdc1d826b65dec32440e8e00 |
|
BLAKE2b-256 | 067adf3123eea2cabe941466ab70ae2e1a36aab9746f7e441e252a603dda72f8 |