Skip to main content

No project description provided

Project description

Downloads DownloadsMonth DownloadsWeek

Darknetpy is a simple binding for darknet’s yolo (v4) detector.

https://raw.githubusercontent.com/danielgatis/darknetpy/master/example/example.png

Installation

Install it from pypi

curl https://sh.rustup.rs -sSf | sh
rustup default nightly
pip install darknetpy

Install a pre-built binary

pip install https://github.com/danielgatis/darknetpy/raw/master/dist/darknetpy-4.1-cp36-cp36m-linux_x86_64.whl

Advanced options (only for pypi installation)

GPU=1 pip install darknetpy

to build with CUDA to accelerate by using GPU (CUDA should be in /use/local/cuda).

CUDNN=1 pip install darknetpy

to build with cuDNN to accelerate training by using GPU (cuDNN should be in /usr/local/cudnn).

OPENCV=1 pip install darknetpy

to build with OpenCV.

OPENMP=1 pip install darknetpy

to build with OpenMP support to accelerate Yolo by using multi-core CPU.

Usage

In example.py:

from darknetpy.detector import Detector

detector = Detector('<absolute-path-to>/darknet/cfg/coco.data',
                    '<absolute-path-to>/darknet/cfg/yolo.cfg',
                    '<absolute-path-to>/darknet/yolo.weights')

results = detector.detect('<absolute-path-to>/darknet/data/dog.jpg')

print(results)

Runing:

python example.py

Result:

[{'right': 194, 'bottom': 353, 'top': 264, 'class': 'dog', 'prob': 0.8198755383491516, 'left': 71}]

Build

On the project root directory

docker pull hoshizora/manylinux1-clang_x86_64
docker run --rm -v `pwd`:/io hoshizora/manylinux1-clang_x86_64 /io/build-wheels.sh

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

darknetpy-4.2.tar.gz (10.0 kB view details)

Uploaded Source

File details

Details for the file darknetpy-4.2.tar.gz.

File metadata

  • Download URL: darknetpy-4.2.tar.gz
  • Upload date:
  • Size: 10.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for darknetpy-4.2.tar.gz
Algorithm Hash digest
SHA256 14d1daeafb560a715871be2351629b0d4f2b573db1655a0a586f5bdc1e615598
MD5 e4d6dca4b9abaddca80f1198eebc4497
BLAKE2b-256 1ceffd29682266afda5ef53ab883ccef303eaca3085e38c4028f6404041bb112

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page