No project description provided
Project description
Darknetpy is a simple binding for darknet’s yolo (v4) detector.
Installation
Install it from pypi
curl https://sh.rustup.rs -sSf | sh
rustup default nightly
pip install darknetpy
Install a pre-built binary
pip install https://github.com/danielgatis/darknetpy/raw/master/dist/darknetpy-4.1-cp36-cp36m-linux_x86_64.whl
Advanced options (only for pypi installation)
GPU=1 pip install darknetpy
to build with CUDA to accelerate by using GPU (CUDA should be in /use/local/cuda).
CUDNN=1 pip install darknetpy
to build with cuDNN to accelerate training by using GPU (cuDNN should be in /usr/local/cudnn).
OPENCV=1 pip install darknetpy
to build with OpenCV.
OPENMP=1 pip install darknetpy
to build with OpenMP support to accelerate Yolo by using multi-core CPU.
Usage
In example.py:
from darknetpy.detector import Detector detector = Detector('<absolute-path-to>/darknet/cfg/coco.data', '<absolute-path-to>/darknet/cfg/yolo.cfg', '<absolute-path-to>/darknet/yolo.weights') results = detector.detect('<absolute-path-to>/darknet/data/dog.jpg') print(results)
Runing:
python example.py
Result:
[{'right': 194, 'bottom': 353, 'top': 264, 'class': 'dog', 'prob': 0.8198755383491516, 'left': 71}]
Build
On the project root directory
docker pull hoshizora/manylinux1-clang_x86_64
docker run --rm -v `pwd`:/io hoshizora/manylinux1-clang_x86_64 /io/build-wheels.sh
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
darknetpy-4.2.tar.gz
(10.0 kB
view details)
File details
Details for the file darknetpy-4.2.tar.gz
.
File metadata
- Download URL: darknetpy-4.2.tar.gz
- Upload date:
- Size: 10.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 14d1daeafb560a715871be2351629b0d4f2b573db1655a0a586f5bdc1e615598 |
|
MD5 | e4d6dca4b9abaddca80f1198eebc4497 |
|
BLAKE2b-256 | 1ceffd29682266afda5ef53ab883ccef303eaca3085e38c4028f6404041bb112 |