Skip to main content

Python wrapper for DarkProp

Project description

license Project Status: Active – The project has reached a stable, usable state and is being actively developed.

Python wrapper of DarkProp, a Monte Carlo simulation code for the propagation of dark matter particles in a medium.

Installation

Install using pip

$ pip install --user darkprop

Install from the source

  1. Download the source code from DarkProp's homepage.

  2. Install dependencies. A C++ compiler supporting C++17 standard is required. GSL, HDF5, and spdlog are needed to build the Python wrapper. They can be installed, for example

    • Ubuntu >= 22.04

      $ sudo apt install g++ libgsl-dev libhdf5-dev libspdlog-dev
      
    • Fedora >= 33

      $ sudo dnf install g++ python3-devel gsl-devel hdf5-devel spdlog-devel
      

    Then prepare a python virtual environment and activate it.

    $ python3 -m venv venv
    $ source venv/bin/activate
    
  3. Build and install into the virtual environment. In the root directory of the source code, execute

    $ python3 -m pip install .
    

Tip

If there is a network problem during pip install, you can set up a mirror server. For example, using Tsinghua mirror, add -i option to pip install command

$ pip install -i https://pypi.tuna.tsinghua.edu.cn/simple darkprop

Example

Install Jupyter notebook and Matplotlib to run the example.

$ jupyter-notebook example/python/basic-example.ipynb

Uninstall

$ pip uninstall darkprop

Citation

If you use darkprop in your publications, please cite the paper

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

darkprop-0.3.0-cp312-cp312-manylinux_2_28_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

darkprop-0.3.0-cp312-cp312-macosx_14_0_arm64.whl (4.4 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

darkprop-0.3.0-cp311-cp311-manylinux_2_28_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

darkprop-0.3.0-cp310-cp310-manylinux_2_28_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

darkprop-0.3.0-cp39-cp39-manylinux_2_28_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

darkprop-0.3.0-cp38-cp38-manylinux_2_28_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

File details

Details for the file darkprop-0.3.0-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for darkprop-0.3.0-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 40e465b7820a4e458c0b50adfde39cc674cb9946e3cc2dd10cf5fc655f08778a
MD5 63ad69704f31a40077ccfbfd2de737ec
BLAKE2b-256 310b140e3145d5e2848c1e6c09d3378458da4ce8d13fe185fd74e9d99adcd6db

See more details on using hashes here.

File details

Details for the file darkprop-0.3.0-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for darkprop-0.3.0-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 48ddf305b9e9565e043b955c87b3c9d1cbba499d3768d45fd39d00bd4e059e37
MD5 c73de859399dd4c940b5c55abadb7fe0
BLAKE2b-256 8aff8cfb9a7036025653d05aed92324aacc0fb0dcee87882bfd0e229ce247279

See more details on using hashes here.

File details

Details for the file darkprop-0.3.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for darkprop-0.3.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 614274bc6a444da2e45185770d10b411f0a00ce1446b4809063c4bd22880bd7d
MD5 da19d7180490f48dffeac0648e87eeca
BLAKE2b-256 92653b7d186cad051d59187e492574039040dbbe09a0c0c211d4032abb97001b

See more details on using hashes here.

File details

Details for the file darkprop-0.3.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for darkprop-0.3.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d4bdc2eb91a6078a84cc3123b429cc384294dc1a79767d8283528272a123dec7
MD5 2f9cab0e51ccfc5336c9b642bcb2c114
BLAKE2b-256 fd432ef699be115676c2a7ab1d51b4ba3cd8dabb6bbbd95b95df005668216882

See more details on using hashes here.

File details

Details for the file darkprop-0.3.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for darkprop-0.3.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 3d9c65e8c7910cc3a2278238e3a1bccab06c34d48ca6877e5464de7345904c39
MD5 fb11136faaaa23ef635d1363ebc766ba
BLAKE2b-256 a0d1c6381dab82a811be0da89e16c626423ec6fef40259f0fda7a383cbe74e5e

See more details on using hashes here.

File details

Details for the file darkprop-0.3.0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for darkprop-0.3.0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a664c4552784281e518edbf1e8da6e30fea1e486eda121e5849e093ab098d877
MD5 f53a9fe568ea19e2203c1428d903a3fa
BLAKE2b-256 2131e9608dc86c63ae930da4eb58d66abc6eb4bdf1c0b4f186a58dc8de4093ab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page