Skip to main content

Darr is a Python science library for storing numeric data arrays in a format that is open, simple, and self-explanatory

Project description

Darr is a Python science library for efficient read/write/append access to disk-persistent numeric data arrays. There are other Python libraries for this, but Darr also ensures tool-independent and long-term accessibility of your data. It saves and automatically updates a human-readable explanation of how your binary data is stored, together with code for reading the specific data in a variety of current scientific data tools such as Python, R, Julia, IDL, Matlab, Maple, and Mathematica (see [example array] (https://github.com/gbeckers/Darr/tree/master/examplearrays/examplearray_float64.darr)).

In essence, Darr enables you to efficiently work with potentially very large data arrays in a Python/NumPy environment, and share this data as is with others who do not use Darr, or even Python, without exporting anything. It is also an easy way to make sure you can read your own data in the future when you may use different tools.

Darr currently supports numerical N-dimensional arrays, and experimentally supports numerical ragged arrays, i.e. a series of arrays in which one dimension varies in length.

Darr is currently pre-1.0, still undergoing significant development. It is open source and freely available under the New BSD License <https://opensource.org/licenses/BSD-3-Clause>__ terms.

Darr is currently pre-1.0, still undergoing significant development.

Features

  • Purely based on flat binary and text files, tool independence.
  • Supports very large data arrays through memory-mapped file access.
  • Data read/write access through NumPy indexing
  • Data is easily appendable.
  • Human-readable explanation of how the binary data is stored is saved in a README text file.
  • README also contains examples of how to read the array in popular analysis environments such as Python (without Darr), R, Julia, Octave/Matlab, GDL/IDL, Maple, and Mathematica.
  • Many numeric types are supported: (u)int8-(u)int64, float16-float64, complex64, complex128.
  • Easy use of metadata, stored in a separate JSON text file.
  • Minimal dependencies, only NumPy.
  • Integrates easily with the Dask or NumExpr libraries for numeric computation on very large Darr arrays.

See the documentation for more information.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

darr-0.1.11.tar.gz (45.9 kB view details)

Uploaded Source

Built Distribution

darr-0.1.11-py3-none-any.whl (34.2 kB view details)

Uploaded Python 3

File details

Details for the file darr-0.1.11.tar.gz.

File metadata

  • Download URL: darr-0.1.11.tar.gz
  • Upload date:
  • Size: 45.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.4

File hashes

Hashes for darr-0.1.11.tar.gz
Algorithm Hash digest
SHA256 b8732bd5a4ca82354ca07ecb4583bdf415b33c52ff70708de89355243b52bb26
MD5 7325c613548be625959c4b8d2ebdb2ef
BLAKE2b-256 a44278b4fb894479fc3818185e6dcd201a40f953e2b581e6f4c8dd88d7729ec9

See more details on using hashes here.

File details

Details for the file darr-0.1.11-py3-none-any.whl.

File metadata

  • Download URL: darr-0.1.11-py3-none-any.whl
  • Upload date:
  • Size: 34.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.4

File hashes

Hashes for darr-0.1.11-py3-none-any.whl
Algorithm Hash digest
SHA256 2bb6c91029c72d0f6bd3de367b394adaaed62a7daa1d69eebcdd8e8de7de5b09
MD5 c350d233a24f9ecf8b6177d01f76b904
BLAKE2b-256 bd38715bbd019c5340c395170424a031e899dc7884708f03071834a3c671a0a5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page