Skip to main content

Simple widgets to add plotly express style plotting to dash

Project description

Dash Express Components

Publish release PyPI npm Documentation Test codecov

Components to bring Plotly Express style plots to Dash:

A typical data flow looks like this:

First, the metadata is extracted from the dataframe df with dxc.get_meta(df). This meta json is needed for dxc.Filter, dxc.Transform or dxc.Plotter to show all options without additional queries to the dataframe. As a result, the components react quite quickly.

Since the metadata can be changed by filter or transform operations, and we don't want additional server calls, the changes are directly computed in the web components. You can access the metadata after transformations via the meta_out property of dxc.Filter and dxc.Transform.

A combined config is needed to compute the final plot with dxc.get_plot(df, config). You can combine the configurations of each component yourself or use the dxc.Configurator to get a combined configuration like:

{
    "filter": [
        {
            "col": "continent",
            "type": "isnotin",
            "value": ["Oceania"]
        }
    ],    
    "transform": [
        {
            "type": "aggr",
            "groupby": [
                "country",
                "continent"
            ],
            "cols": ["gdpPercap"],
            "types": ["median"]
        }
    ],
    "plot": {
        "type": "box",
        "params": {
            "x": "continent",
            "y": "gdpPercap_median",
            "color": "continent",
            "aggr": ["mean"],
            "reversed_x": True
        }
    }
}

An example with the gapminder dataset and dash-lumino-components for the MDI layout. example

Try it

Install dependencies

$ pip install dash-express-components

and start with quickly editable graphs:

import dash_express_components as dxc
app.layout = html.Div([

    # add a plot dxc.Configurator
    html.Div([
        dxc.Configurator(
            id="plotConfig",
            meta=meta,
        ),
    ], style={"width": "500px", "float": "left"}),

    # add an editable dxc.Graph 
    html.Div([
        dxc.Graph(id="fig",
                  meta=meta,
                  style={"height": "100%", "width": "100%"}
                 )],
        style={"width": "calc(100% - 500px)", "height": "calc(100vh - 30px)",
               "display": "inline-block", "float": "left"}
    )
])

Develop

  1. Install npm packages

    $ npm install
    
  2. Create a virtual env and activate.

    $ virtualenv venv
    $ . venv/bin/activate
    

    Note: venv\Scripts\activate for windows

  3. Install python packages required to build components.

    $ pip install -r requirements.txt
    
  4. Build your code

    $ npm run build
    
  5. Run the example

    $ python usage.py
    

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dash_express_components-0.0.115.tar.gz (483.4 kB view details)

Uploaded Source

File details

Details for the file dash_express_components-0.0.115.tar.gz.

File metadata

File hashes

Hashes for dash_express_components-0.0.115.tar.gz
Algorithm Hash digest
SHA256 df0ab6e7ae8ec5ba04dced090e9f40caf809095b0c7fc5bc0dc2b5bb8194f0c1
MD5 da9cbad19e0da2b6afa3611abe098f68
BLAKE2b-256 a721f6879b9f2f87d6a93d6264abc0bca4141c62fc62777c0b31aea4381b23f1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page