Skip to main content

No project description provided

Project description

Dasheng (大声)

Official PyTorch code for Deep Audio-Signal Holistic Embeddings
Scaling up masked audio encoder learning for general audio classification

version version version python mit

TL;DR

python3 -m pip install dasheng
python3 -c "from dasheng import dasheng_base; import torch; model = dasheng_base().eval(); features=model(torch.randn(1, 16000))"

This repo provides checkpoints for the Interspeech 2024 paper Scaling up masked audio encoder learning for general audio classification. The goal of this work is to investigate the scalability of masked autoencoders for audio. Prior work did not scale beyond 10,000 hours of audio, while Dasheng used 272,000 hours of training data.

Huggingface 🤗

version version version

Please see here for usage instructions.

Models

Dasheng models have been trained on 272k hours of general audio, mainly VGGSound, Audioset, MTG-Jamendo and ACAV100M.

Models with their evaluation results on the HEAR benchmark, averaged across different domains.

Model Parameters (M) Environment Sounds Speech Music
Dasheng-Base 86 80.2 72.5 84.0
Dasheng-0.6B 600 82.4 74.9 84.0
Dasheng-1.2B 1200 83.2 75.7 84.9
AudioMAE 86 61.7 38.7 72.7
Whisper-Base-V1 74 52.5 73.1 69.1
WavLM-Large 330 71.4 72.2 65.0
Wav2vec-large-100k-voxpopuli 300 62.5 63.6 69.5
Data2Vec-Audio-Large 300 41.1 60.5 55.0
Hear capabiltiies

K-Nearest Neighbor results

Performance of features without parameterized training.

ESC50 FSDKaggle18 NSynth Instrument Speech Commands 1 Speech Commands 2 US8k VoxCeleb1 RAVDESS-Speech FluentSpeechCommands
MSM-MAE 2 2.18 20.58 3.7 1.5 11.5 0.12 6.77 1.85
MelSpec 18.4 38.5 35.5 3.7 1.5 40.39 5.26 29.65 9.97
CED-Base 95.35 85.06 74.41 79.78 62.66 87.06 7.02 52.78 16.61
AudioMAE 53.05 43.38 67.21 56.87 5.9 58.18 2.9 28.68 7.59
WavLM-Large 51.3 60.87 96.97 92.69 58.67 28.54 51.39 83.28
Wav2vec-large-100k-voxpopuli 44 59.5 60.42 80.86 66.61 59.84 18.22 45.76 30.48
Dasheng-Base 61.9 70.31 70.02 93.55 86 73.87 34.21 58.12 52.33
Dasheng-0.6B 66.55 72.06 70.87 93.36 87.27 75.92 37.78 61.81 57.63
Dasheng-1.2B 68.55 72.06 71.19 95.9 90.9 77.71 39.39 61.94 62.38

1. Installation (Recommended for inference)

Install the package.

python3 -m pip install dasheng

1.2 Installation for Training

python3 -m pip install dasheng[train]

2. Usage

# The three models of the paper
from dasheng import dasheng_base, dasheng_06B, dasheng_12B

model = dasheng_base()

Forward some audio data (note should be 16khz)

import torch
model = model.eval()
features = model(torch.randn(1, 16000))
print(features.shape)

3. Training

Install dependencies:

python3 -m pip install dasheng[train]

3.1 Prepare data

We rely on the excellent webdataset library for I/O. Thus one simply needs to pack their data into a bunch of .tar files.

A simple example of such a file would be:

find DIR -type f -name '*flac' |  tar -rvf data.tgz -T -

We also provide a simple script [wavlist_to_tar] that automates this process, which is installed with the package.

wavlist_to_tar your_data.tsv shards/

Creating your_data.tsv is simple:

find data -type f  | awk 'BEGIN{"filename"}{print}' > your_data.tsv

3.2 Training from source

To train one should first adjust the config in dasheng/train/config/*yaml accordingly, by adding their training data.

python3 dasheng/train/train.py dasheng/train/config/dasheng_base.yaml

MultiGPU support is realized using Accelerate

accelerate launch --mixed_precision='bf16' dasheng/train/train.py dasheng/train/config/dasheng_base.yaml

Citation

@inproceedings{dinkel2024dasheng,
  title={Scaling up masked audio encoder learning for general audio classification},
  author={Dinkel, Heinrich and Yan, Zhiyong and Wang, Yongqing and Zhang, Junbo and Wang, Yujun and Wang, Bin},
  booktitle={Interspeech 2024},
  year={2024}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dasheng-0.0.3.tar.gz (29.2 kB view details)

Uploaded Source

Built Distribution

dasheng-0.0.3-py3-none-any.whl (26.9 kB view details)

Uploaded Python 3

File details

Details for the file dasheng-0.0.3.tar.gz.

File metadata

  • Download URL: dasheng-0.0.3.tar.gz
  • Upload date:
  • Size: 29.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.18

File hashes

Hashes for dasheng-0.0.3.tar.gz
Algorithm Hash digest
SHA256 fc64d9597d23ecd071724ceb22fdd2fc941222b10986e4618d18321bb57846c3
MD5 b7b14b2af5aa670faa4056ac3eaa2805
BLAKE2b-256 68cc7913c0c634bc9b95317c12357636c579171a86b432939d3511a533747b66

See more details on using hashes here.

File details

Details for the file dasheng-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: dasheng-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 26.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.18

File hashes

Hashes for dasheng-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 242160ac72f68e4b4f066d81050dbb6098b1e0f454557a9cbf71f731714af311
MD5 850a1d9b67136b33ba1a79d309d164d6
BLAKE2b-256 0132325b4ef6ec23e6366ac5d5b0683ee1683f9aa454165ac75351ec729771dd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page