Skip to main content

Tools for doing hyperparameter search Scikit-Learn and Dask

Project description

Travis Status Documentation Status

Tools for performing hyperparameter search with Scikit-Learn and Dask.

This library provides implementations of Scikit-Learn’s GridSearchCV and RandomizedSearchCV. They implement many (but not all) of the same parameters, and should be a drop-in replacement for the subset that they do implement. For certain problems, these implementations can be more efficient than those in Scikit-Learn, as they can avoid expensive repeated computations.

from sklearn.datasets import load_digits
from sklearn.svm import SVC
import dask_searchcv as dcv
import numpy as np

digits = load_digits()

param_space = {'C': np.logspace(-4, 4, 9),
               'gamma': np.logspace(-4, 4, 9),
               'class_weight': [None, 'balanced']}

model = SVC(kernel='rbf')
search = dcv.GridSearchCV(model, param_space, cv=3)

search.fit(digits.data, digits.target)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for dask-searchcv, version 0.0.1
Filename, size File type Python version Upload date Hashes
Filename, size dask-searchcv-0.0.1.tar.gz (45.6 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring DigiCert DigiCert EV certificate Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page