Skip to main content

clean factor data

Project description

This project is to clean factor data and to prepare for back test.

Dependencies

  • python 3.5

  • pandas 0.22.0

  • numpy 1.14.3

  • pickle

  • sklearn 0.19.1 (for pca only)

Example

from data_box import data_box

db=data_box()\
    .set_lag(freq='d',day_lag=0)\
    .load_adjPrice(price)\ # 'price' is a pd.DataFrame with dates(20190101 int type) as its index and tickers as its column
    .load_indestry(ind)\
    .load_suspend(sus)\
    .load_indexWeight(index_weight)\
    .calc_indweight()\ # calculate industry weight based on index weight and stocks' industry in this index
    .load_cap(cap)\
    .add_factor('f1',factor1)\
    .add_factor('f2',factor2)\
    .add_factor('f3',factor3)\
    .align_data()\
    .factor_pca()\
    .factor_ind_neutral()\
    .factor_size_neutral()\
    .factor_zscore()

print(db.Factor)
print(db.Price)
print(db.Sus)
print(db.Cap)

# save and reload
db.save(path)
db2=databox().load(path)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

data_box-0.0.0a2-py3-none-any.whl (7.7 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page