Skip to main content

Data Preparation Laboratory Library. KFP support

Project description

KFP support library

This provides support for implementing KFP pipelines automating transform's execution. It comprises 2 main modules

Development

Requirements

  1. python 3.10 or later
  2. git command line tools
  3. pre-commit
  4. twine (pip install twine)
    • but on Mac you may have to include a dir in your PATH, such as export PATH=$PATH:/Library/Frameworks/Python.framework/Versions/3.10/bin

Git

Simple clone the repo and set up the pre-commit hooks.

git clone git@github.com:IBM/data-prep-lab.git
cd kfp/kfp_support_lib
pre-commit install

If you don't have pre-commit, you can install from here

Library Artifact Build and Publish

The process of creating a release for fm_data_processing_kfp package involves the following steps:

cd to the package directory.

update the version in requirements.env file.

run make build and make publish.

Testing

To run the package tests perform the following:

To begin with, establish a Kind cluster and deploy all required components by executing the makfefile command in the main directory of this repository. As an alternative, you can manually execute the instructions provided in the README.md file.

make setup

The next step is to deploy the data-prep-lab-kfp package locally within a Python virtual environment.

make  build

lastly, execute the tests:

make test

Cleanup

It is advisable to execute the following command prior to running make test once more. This will ensure that any previous test runs resources are removed before starting new tests.

kubectl delete workflows -n kubeflow --all

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

data_prep_lab_kfp-0.1.6.dev6.tar.gz (30.0 kB view details)

Uploaded Source

Built Distribution

data_prep_lab_kfp-0.1.6.dev6-py3-none-any.whl (32.5 kB view details)

Uploaded Python 3

File details

Details for the file data_prep_lab_kfp-0.1.6.dev6.tar.gz.

File metadata

File hashes

Hashes for data_prep_lab_kfp-0.1.6.dev6.tar.gz
Algorithm Hash digest
SHA256 740006f40670f58428c5550fc54b569601f13b875af99434fbabf21d7456fa36
MD5 2db9b243f9740e3a138813a38bb8240e
BLAKE2b-256 cea1c9a2628a78fba687693856b3b48ef3791f677a0a293b85b8d12762c17aaf

See more details on using hashes here.

File details

Details for the file data_prep_lab_kfp-0.1.6.dev6-py3-none-any.whl.

File metadata

File hashes

Hashes for data_prep_lab_kfp-0.1.6.dev6-py3-none-any.whl
Algorithm Hash digest
SHA256 ae91f8d61bde02381eda99cf4eff8c3f0415205afb826935dd38191ec6638a87
MD5 e22c10b34db0cb28cf16e65d2ef7c184
BLAKE2b-256 6bcf978bf1e5bc900e0b004441b167129ce5c7f6389e94cdf9bd17491f52f997

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page