Skip to main content

Data quality checking made easy!

Project description

data-qualitator

Data Quality testing made easy!

python310 python39 python38 codecov Downloads Code style: black License: MIT

Introduction

Uses Great Expectations as underlying data quality framework. Performs data quality checks for data pipelines, profiling, governance and microservices!

Supports:
✅ Local filesystem (csv and parquet types)
✅ GCP (Cloud Storage csv and parquet file types)
✅ Generic SQL (AWS Athena, AWS Redshift, GCP BigQuery, GCP CloudSQL [MySQL, PostgreSQL], Snowflake, Sqlite. See SQL Connection String section)

Installation

Create and activate new python environment

python -m venv python39
source python39/bin/activate

Upgrade pip to latest version

pip install --upgrade pip

Install Data Quality package.

pip install data-qualitator

Create data quality instance

Import modules

from data_qualitator import provider
from data_qualitator.utils import constants

Local Filesystem, CSV

# Create a testing config
config = {
  # The directory where great expectations library will generate files.
  "project_root_dir": "./tmp/test_csv",
  # The data quality test name.
  "test_name": "testing_csv"
}

# Create a data quality instance.
dq = provider.services.get(
  # The data quality service we want to use for file types.
  constants.FILESYSTEM_CSV,
  # The data quality configuration.
  **config
)

# Create a data quality validator instance
validator = dq.validator(
  # The directory path of the csv files.
  file_path="./tests/data/csv",
  # The regex pattern to filter files for processing.
  file_path_regex=r"test_(?P<year>\d{4})(?P<month>\d{2})(?P<day>\d{2})\.csv"
)

Local Filesystem, Parquet

# Create a testing config
config = {
  # The directory where great expectations library will generate files.
  "project_root_dir": "./tmp/test_parquet",
  # The data quality test name.
  "test_name": "testing_parquet"
}

# Create a data quality instance.
dq = provider.services.get(
  # The data quality service we want to use for file types.
  constants.FILESYSTEM_PARQUET,
  # The data quality configuration.
  **config
)

# Create a data quality validator instance
validator = dq.validator(
  # The directory path of the csv files.
  file_path="./tests/data/parquet",
  # The regex pattern to filter files for processing.
  file_path_regex=r"test_(?P<year>\d{4})(?P<month>\d{2})(?P<day>\d{2})\.parquet"
)

Google Cloud Platform, Cloud Storage - CSV

# Create a testing config
config = {
  # The directory where great expectations library will generate files.
  "project_root_dir": "./tmp/test_gcp_gcs_csv",
  # The data quality test name.
  "test_name": "testing_gcp_gcs_csv"
}

# Create a data quality instance.
dq = provider.services.get(
  # The data quality service we want to use for file types.
  constants.GOOGLE_CLOUD_PLATFORM_CLOUDSTORAGE_CSV,
  # The data quality configuration.
  **config
)

# Create a data quality validator instance
validator = dq.validator(
  # The GCP cloud storage bucket.
  bucket_or_name="testdev2024",
  # The GCP cloud storage options.
  gcs_options={},
  # Batching regex pattern.
  batching_regex=r"test_(?P<year>\d{4})(?P<month>\d{2})(?P<day>\d{2})\.csv",
  # Bucket folders.
  gcs_prefix="csv/"
)

Google Cloud Platform, Cloud Storage - Parquet

# Create a testing config
config = {
  # The directory where great expectations library will generate files.
  "project_root_dir": "./tmp/test_gcp_gcs_parquet",
  # The data quality test name.
  "test_name": "testing_gcp_gcs_parquet"
}

# Create a data quality instance.
dq = provider.services.get(
  # The data quality service we want to use for file types.
  constants.GOOGLE_CLOUD_PLATFORM_CLOUDSTORAGE_PARQUET,
  # The data quality configuration.
  **config
)

# Create a data quality validator instance
validator = dq.validator(
  # The GCP cloud storage bucket.
  bucket_or_name="testdev2024",
  # The GCP cloud storage options.
  gcs_options={},
  # Batching regex pattern.
  batching_regex=r"test_(?P<year>\d{4})(?P<month>\d{2})(?P<day>\d{2})\.parquet",
  # Bucket folders.
  gcs_prefix="parquet/"
)

Generic SQL - BigQuery

# Create a testing config
config = {
  # The directory where great expectations library will generate files.
  "project_root_dir": "./tmp/test_bigquery",
  # The data quality test name.
  "test_name": "testing_bigquery"
}

# Create a data quality instance.
dq = provider.services.get(
  # The data quality service we want to use for file types.
  constants.SQL,
  # The data quality configuration.
  **config
)

# Create a data quality validator instance
# The gcp project id.
gcp_project_id="my-gcp-project418702"
# The gcp dataset id.
gcp_dataset_id="testds"
# The gcp service account file.
gcp_credentials_path="/Users/jay/Downloads/my-gcp-service-account.json"

validator = dq.validator(
  connection_str=f"bigquery://{gcp_project_id}/{gcp_dataset_id}? \
  credentials_path={gcp_credentials_path}",
  sql="""
  SELECT * FROM testtbl;
"""
)

Generic SQL - PostgreSQL

# Create a testing config
config = {
  # The directory where great expectations library will generate files.
  "project_root_dir": "./tmp/test_postgresql",
  # The data quality test name.
  "test_name": "testing_postgresql"
}

# Create a data quality instance.
dq = provider.services.get(
  # The data quality service we want to use for file types.
  constants.POSTGRESQL,
  # The data quality configuration.
  **config
)

# Postgresql config values
pg_config = dotenv_values("./tests/.env_postgresql")

# Create a data quality validator instance
pg_config = dotenv_values("./tests/.env_postgresql")
pg_username = pg_config.get("PG_USERNAME")
pg_password = pg_config.get("PG_PASSWORD")
pg_host = pg_config.get("PG_HOST")
pg_port = pg_config.get("PG_PORT")
pg_database = pg_config.get("PG_DATABASE")

validator = dq.validator(
  connection_str=f"postgresql+psycopg2://{pg_username}: \
  {pg_password}@{pg_host}:{pg_port}/{pg_database}",
  sql="""
    SELECT * FROM test;
"""
)

Supported Data Sources

# Local filesystem, csv file type.
constants.FILESYSTEM_CSV
# Local filesystem, parquet file type.
constants.FILESYSTEM_PARQUET
# Google Cloud Platform, Cloud Storage csv file type.
constants.GOOGLE_CLOUD_PLATFORM_CLOUDSTORAGE_CSV
# Google Cloud Platform, Cloud Storage parquet file type.
constants.GOOGLE_CLOUD_PLATFORM_CLOUDSTORAGE_PARQUET
# AWS Athena, AWS Redshift, GCP BigQuery, 
#  GCP CloudSQL [MySQL, PostgreSQL], Snowflake, Sqlite
constants.SQL

SQL Connection String

# AWS Athena
awsathena+rest://@athena.<REGION>.amazonaws.com/ \
<DATABASE>?s3_staging_dir=<S3_PATH>

# AWS Redshift
postgresql+psycopg2://<USER_NAME>:<PASSWORD>@<HOST>: \
<PORT>/<DATABASE>?sslmode=<SSLMODE>

# GCP BigQuery
bigquery://<GCP_PROJECT>/<BIGQUERY_DATASET? \
credentials_path=/path/to/your/credentials.json

# MSSQL
mssql+pyodbc://<USERNAME>:<PASSWORD>@<HOST>:<PORT>/ \
<DATABASE>?driver=<DRIVER>&charset=utf&autocommit=true

# MySQL
mysql+pymysql://<USERNAME>:<PASSWORD>@<HOST>:<PORT>/ \
<DATABASE>

# PostgreSQL
postgresql+psycopg2://<USERNAME>:<PASSWORD>@<HOST>:<PORT>/ \
<DATABASE>

# Snowflake
snowflake://<USER_NAME>:<PASSWORD>@<ACCOUNT_NAME>/<DATABASE_NAME>/ \
<SCHEMA_NAME>?warehouse=<WAREHOUSE_NAME> \
&role=<ROLE_NAME>&application=great_expectations_oss

# SQLite
sqlite:///<PATH_TO_DB_FILE>

# Trino
trino://<USERNAME>:<PASSWORD>@<HOST>:<PORT>/<CATALOG>/<SCHEMA>

Apply data quality tests

# Regex matching checks
result = validator.expect_column_values_to_match_regex(
column="mobile",
  regex="^9(?!0|63|\+63)\d{9}$",
  mostly=0.99
)
assert "success" in result
assert result["success"] == True

# Column count checks
result = validator.expect_table_column_count_to_equal(5)
assert "success" in result
assert result["success"] == True

# Null values checks
result = validator.expect_column_values_to_not_be_null(
  column="id",
  mostly=0.99
)
assert "success" in result
assert result["success"] == True

# Column ordering checks
result = validator.expect_table_columns_to_match_ordered_list(
  ["id", "name", "mobile", "age", "date"]
)
assert "success" in result
assert result["success"] == True

# Values between checks
result = validator.expect_column_values_to_be_between(
  column="age",
  min_value=12,
  max_value=55,
  mostly=0.99
)
assert "success" in result
assert result["success"] == True

See all supported tests: https://greatexpectations.io/expectations/?filterType=Backend%20support&gotoPage=1&showFilters=true&viewType=Summary

Coverage with unittest (successful tests)

(dq_env) (base) jay@MacBook-Air data_qualitator % coverage run --source=. -m unittest
Calculating Metrics: 100%|██████████████████████████████████████████████████| 3/3 [00:00<00:00, 1133.70it/s]
Calculating Metrics: 100%|███████████████████████████████████████████████████| 6/6 [00:00<00:00, 930.10it/s]
Calculating Metrics: 100%|███████████████████████████████████████████████████| 8/8 [00:00<00:00, 711.43it/s]
Calculating Metrics: 100%|██████████████████████████████████████████████████| 2/2 [00:00<00:00, 2103.46it/s]
Calculating Metrics: 100%|███████████████████████████████████████████████████| 8/8 [00:00<00:00, 726.02it/s]
Calculating Metrics: 100%|█████████████████████████████████████████████████| 23/23 [00:00<00:00, 597.73it/s]
Calculating Metrics: 100%|██████████████████████████████████████████████████| 3/3 [00:00<00:00, 1634.78it/s]
Calculating Metrics: 100%|███████████████████████████████████████████████████| 6/6 [00:00<00:00, 997.14it/s]
Calculating Metrics: 100%|███████████████████████████████████████████████████| 8/8 [00:00<00:00, 737.25it/s]
Calculating Metrics: 100%|██████████████████████████████████████████████████| 2/2 [00:00<00:00, 2043.01it/s]
Calculating Metrics: 100%|███████████████████████████████████████████████████| 8/8 [00:00<00:00, 851.64it/s]
Calculating Metrics: 100%|█████████████████████████████████████████████████| 23/23 [00:00<00:00, 620.36it/s]
Calculating Metrics: 100%|████████████████████████████████████████████████████| 3/3 [00:00<00:00,  5.91it/s]
Calculating Metrics: 100%|████████████████████████████████████████████████████| 8/8 [00:01<00:00,  5.84it/s]
Calculating Metrics: 100%|██████████████████████████████████████████████████| 11/11 [00:01<00:00,  7.51it/s]
Calculating Metrics: 100%|████████████████████████████████████████████████████| 2/2 [00:00<00:00,  6.32it/s]
Calculating Metrics: 100%|██████████████████████████████████████████████████| 11/11 [00:01<00:00,  7.66it/s]
Calculating Metrics: 100%|██████████████████████████████████████████████████| 29/29 [00:02<00:00, 11.58it/s]
Calculating Metrics: 100%|██████████████████████████████████████████████████| 3/3 [00:00<00:00, 1710.56it/s]
Calculating Metrics: 100%|███████████████████████████████████████████████████| 6/6 [00:00<00:00, 902.94it/s]
Calculating Metrics: 100%|███████████████████████████████████████████████████| 8/8 [00:00<00:00, 669.90it/s]
Calculating Metrics: 100%|██████████████████████████████████████████████████| 2/2 [00:00<00:00, 1957.21it/s]
Calculating Metrics: 100%|███████████████████████████████████████████████████| 8/8 [00:00<00:00, 647.09it/s]
Calculating Metrics: 100%|█████████████████████████████████████████████████| 23/23 [00:00<00:00, 278.40it/s]
Calculating Metrics: 100%|███████████████████████████████████████████████████| 3/3 [00:00<00:00, 668.59it/s]
Calculating Metrics: 100%|███████████████████████████████████████████████████| 6/6 [00:00<00:00, 534.24it/s]
Calculating Metrics: 100%|███████████████████████████████████████████████████| 8/8 [00:00<00:00, 632.52it/s]
Calculating Metrics: 100%|██████████████████████████████████████████████████| 2/2 [00:00<00:00, 2118.34it/s]
Calculating Metrics: 100%|███████████████████████████████████████████████████| 8/8 [00:00<00:00, 829.53it/s]
Calculating Metrics: 100%|█████████████████████████████████████████████████| 23/23 [00:00<00:00, 616.85it/s]
Calculating Metrics: 100%|████████████████████████████████████████████████████| 3/3 [00:00<00:00,  6.16it/s]
Calculating Metrics: 100%|████████████████████████████████████████████████████| 8/8 [00:01<00:00,  5.18it/s]
Calculating Metrics: 100%|██████████████████████████████████████████████████| 11/11 [00:01<00:00,  7.29it/s]
Calculating Metrics: 100%|████████████████████████████████████████████████████| 2/2 [00:00<00:00,  6.39it/s]
Calculating Metrics: 100%|██████████████████████████████████████████████████| 11/11 [00:01<00:00,  8.64it/s]
Calculating Metrics: 100%|██████████████████████████████████████████████████| 29/29 [00:02<00:00, 11.69it/s]
.
----------------------------------------------------------------------
Ran 6 tests in 59.662s

OK

Coverage with unittest (failed tests)

(dq_env) (base) jay@MacBook-Air data_qualitator % coverage run --source=. -m unittest
Calculating Metrics: 100%|██████████████████████████████████████████████████| 3/3 [00:00<00:00, 1067.16it/s]
Calculating Metrics: 100%|███████████████████████████████████████████████████| 6/6 [00:00<00:00, 905.44it/s]
Calculating Metrics: 100%|███████████████████████████████████████████████████| 8/8 [00:00<00:00, 706.90it/s]
Calculating Metrics: 100%|██████████████████████████████████████████████████| 2/2 [00:00<00:00, 2112.47it/s]
Calculating Metrics: 100%|███████████████████████████████████████████████████| 8/8 [00:00<00:00, 707.96it/s]
{
  "success": false,
  "expectation_config": {
    "expectation_type": "expect_column_values_to_match_regex",
    "kwargs": {
      "column": "mobile",
      "regex": "^9\\d{9}$",
      "mostly": 0.99,
      "batch_id": "testing_csv_datasource_1711880705-testing_csv_asset-year_2024-month_03-day_23"
    },
    "meta": {}
  },
  "result": {
    "element_count": 2,
    "unexpected_count": 1,
    "unexpected_percent": 50.0,
    "partial_unexpected_list": [
      639171231000
    ],
    "missing_count": 0,
    "missing_percent": 0.0,
    "unexpected_percent_total": 50.0,
    "unexpected_percent_nonmissing": 50.0
  },
  "meta": {},
  "exception_info": {
    "raised_exception": false,
    "exception_traceback": null,
    "exception_message": null
  }
}
Calculating Metrics: 100%|██████████████████████████████████████████████████| 3/3 [00:00<00:00, 1433.46it/s]
Calculating Metrics: 100%|██████████████████████████████████████████████████| 6/6 [00:00<00:00, 1000.83it/s]
Calculating Metrics: 100%|███████████████████████████████████████████████████| 8/8 [00:00<00:00, 727.09it/s]
Calculating Metrics: 100%|██████████████████████████████████████████████████| 2/2 [00:00<00:00, 2087.76it/s]
Calculating Metrics: 100%|███████████████████████████████████████████████████| 8/8 [00:00<00:00, 843.52it/s]
Calculating Metrics: 100%|█████████████████████████████████████████████████| 23/23 [00:00<00:00, 616.42it/s]
Calculating Metrics: 100%|████████████████████████████████████████████████████| 3/3 [00:00<00:00,  4.34it/s]
Calculating Metrics: 100%|████████████████████████████████████████████████████| 8/8 [00:01<00:00,  5.59it/s]
Calculating Metrics: 100%|██████████████████████████████████████████████████| 11/11 [00:01<00:00,  8.48it/s]
Calculating Metrics: 100%|████████████████████████████████████████████████████| 2/2 [00:00<00:00,  6.64it/s]
Calculating Metrics: 100%|██████████████████████████████████████████████████| 11/11 [00:01<00:00,  7.87it/s]
Calculating Metrics: 100%|██████████████████████████████████████████████████| 29/29 [00:02<00:00, 10.22it/s]
Calculating Metrics: 100%|███████████████████████████████████████████████████| 3/3 [00:00<00:00, 666.22it/s]
Calculating Metrics: 100%|███████████████████████████████████████████████████| 6/6 [00:00<00:00, 490.88it/s]
Calculating Metrics: 100%|███████████████████████████████████████████████████| 8/8 [00:00<00:00, 601.05it/s]
Calculating Metrics: 100%|██████████████████████████████████████████████████| 2/2 [00:00<00:00, 2017.95it/s]
Calculating Metrics: 100%|███████████████████████████████████████████████████| 8/8 [00:00<00:00, 765.63it/s]
Calculating Metrics: 100%|█████████████████████████████████████████████████| 23/23 [00:00<00:00, 613.28it/s]
Calculating Metrics: 100%|███████████████████████████████████████████████████| 3/3 [00:00<00:00, 763.39it/s]
Calculating Metrics: 100%|███████████████████████████████████████████████████| 6/6 [00:00<00:00, 553.96it/s]
Calculating Metrics: 100%|███████████████████████████████████████████████████| 8/8 [00:00<00:00, 654.89it/s]
Calculating Metrics: 100%|██████████████████████████████████████████████████| 2/2 [00:00<00:00, 2087.76it/s]
Calculating Metrics: 100%|███████████████████████████████████████████████████| 8/8 [00:00<00:00, 837.60it/s]
Calculating Metrics: 100%|█████████████████████████████████████████████████| 23/23 [00:00<00:00, 613.76it/s]
Calculating Metrics: 100%|████████████████████████████████████████████████████| 3/3 [00:00<00:00,  4.00it/s]
Calculating Metrics: 100%|████████████████████████████████████████████████████| 8/8 [00:01<00:00,  6.28it/s]
Calculating Metrics: 100%|██████████████████████████████████████████████████| 11/11 [00:01<00:00,  7.23it/s]
Calculating Metrics: 100%|████████████████████████████████████████████████████| 2/2 [00:00<00:00,  7.73it/s]
Calculating Metrics: 100%|██████████████████████████████████████████████████| 11/11 [00:01<00:00,  8.76it/s]
Calculating Metrics: 100%|██████████████████████████████████████████████████| 29/29 [00:02<00:00, 12.15it/s]
.
======================================================================
FAIL: test_build_docs (tests.test_filesystem_csv_service.TestFilesystemCsvService)
----------------------------------------------------------------------
Traceback (most recent call last):
  File "/Users/jay/Projects/data_qualitator/tests/test_filesystem_csv_service.py", line 44, in test_build_docs
    assert result["success"] == True
AssertionError

----------------------------------------------------------------------
Ran 6 tests in 55.925s

FAILED (failures=1)

Generate data docs

# Save expectation suite after the tests
validator.save_expectation_suite(discard_failed_expectations=False)

# Perform a checkpoint
checkpoint = dq.ge_context.add_or_update_checkpoint(
  name="test_build_docs",
  validator=validator
)
checkpoint.run()

# Build data docs
context.build_data_docs()

# To access generated HTML report, open:
# <project_root_dir>/uncommitted/data_docs/local_site/index.html

data docs

Code coverage report

(dq_env) (base) jay@MacBook-Air data_qualitator % coverage report -m --omit=setup.py
Name                                                            Stmts   Miss  Cover   Missing
---------------------------------------------------------------------------------------------
data_qualitator/__init__.py                                         0      0   100%
data_qualitator/factory.py                                          8      0   100%
data_qualitator/provider.py                                        16      0   100%
data_qualitator/services/__init__.py                                0      0   100%
data_qualitator/services/filesystem/__init__.py                     0      0   100%
data_qualitator/services/filesystem/csv/__init__.py                 0      0   100%
data_qualitator/services/filesystem/csv/builder.py                  8      0   100%
data_qualitator/services/filesystem/csv/service.py                 22      0   100%
data_qualitator/services/filesystem/parquet/__init__.py             0      0   100%
data_qualitator/services/filesystem/parquet/builder.py              8      0   100%
data_qualitator/services/filesystem/parquet/service.py             22      0   100%
data_qualitator/services/gcp/__init__.py                            0      0   100%
data_qualitator/services/gcp/cloudstorage/__init__.py               0      0   100%
data_qualitator/services/gcp/cloudstorage/csv/__init__.py           0      0   100%
data_qualitator/services/gcp/cloudstorage/csv/builder.py            8      0   100%
data_qualitator/services/gcp/cloudstorage/csv/service.py           24      0   100%
data_qualitator/services/gcp/cloudstorage/parquet/__init__.py       0      0   100%
data_qualitator/services/gcp/cloudstorage/parquet/builder.py        8      0   100%
data_qualitator/services/gcp/cloudstorage/parquet/service.py       24      0   100%
data_qualitator/services/sql/__init__.py                            0      0   100%
data_qualitator/services/sql/builder.py                             8      0   100%
data_qualitator/services/sql/service.py                            22      0   100%
data_qualitator/utils/__init__.py                                   0      0   100%
data_qualitator/utils/constants.py                                  5      0   100%
tests/__init__.py                                                   0      0   100%
tests/test_filesystem_csv_service.py                               25      0   100%
tests/test_filesystem_parquet_service.py                           25      0   100%
tests/test_googlecloudplatform_bigquery_service.py                 29      0   100%
tests/test_googlecloudplatform_cloudstorage_csv.py                 25      0   100%
tests/test_googlecloudplatform_cloudstorage_parquet.py             25      0   100%
tests/test_postgresql_service.py                                   32      0   100%
---------------------------------------------------------------------------------------------
TOTAL                                                             344      0   100%

Roadmap

This is early development* version. I am currently considering:

  • Local filesystem, CSV file type service support.
  • Local filesystem, Parquet file type service support.
  • Amazon Web Services, Athena service support.
  • Amazon Web Services, Redshift service support.
  • Google Cloud Platform, Cloud Storage service support.
  • Google Cloud Platform, BigQuery SQL service support.
  • Google Cloud Platform, CloudSQL service support.
  • MySQL service support.
  • MSSQL service support.
  • PostgreSQL service support.
  • Snowflake, SQL service support.
  • Amazon Web Services, S3 service support.
  • Apache Spark service support.
  • Microsoft Azure, Blob Storage service support.

Author

Jay Milagroso <j.milagroso@gmail.com>

https://github.com/jmilagroso

Reference

https://greatexpectations.io/expectations/

MIT License

Copyright (c) 2024 Jay Milagroso

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

data_qualitator-1.0.2.tar.gz (21.1 kB view details)

Uploaded Source

File details

Details for the file data_qualitator-1.0.2.tar.gz.

File metadata

  • Download URL: data_qualitator-1.0.2.tar.gz
  • Upload date:
  • Size: 21.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.13

File hashes

Hashes for data_qualitator-1.0.2.tar.gz
Algorithm Hash digest
SHA256 2a8488dfc7ce029d18984dd5d8ee20c4d2e5bff45476f2146aa4c875593fa19b
MD5 489efc5787b604925c4bb17f757016ab
BLAKE2b-256 318d39d8e1b3ff34acf1126613927f839d57ec7554bdd19d835d815f0e89eff5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page