Skip to main content

No project description provided

Project description

Master codecov

data-toolset

data-toolset is designed to simplify your data processing tasks by providing a more user-friendly alternative to the traditional JAR utilities like avro-tools and parquet-tools. With this Python package, you can effortlessly handle various data file formats, including Avro and Parquet, using a simple and intuitive command-line interface.

Installation

Python 3.9 and 3.10 are supported and tested (to some extent).

pip install --user data-toolset

Usage

$ data-toolset -h
usage: data-toolset [-h] {head,tail,meta,schema,stats,query,validate,merge,count,to_json,to_csv} ...

positional arguments:
  {head,tail,meta,schema,stats,query,validate,merge,count,to_json,to_csv}
                        commands
    head                Print the first N records from a file
    tail                Print the last N records from a file
    meta                Print a file's metadata
    schema              Print the Avro schema for a file
    stats               Print statistics about a file
    query               Query a file
    validate            Validate a file
    merge               Merge multiple files into one
    count               Count the number of records in a file
    to_json             Convert a file to JSON format
    to_csv              Convert a file to CSV format

optional arguments:
  -h, --help            show this help message and exit

Examples

Print the first 10 records of a Parquet file:

data-toolset head my_data.parquet -n 10

Query a Parquet file using a SQL-like expression:

data-toolset query my_data.parquet "SELECT * FROM 'my_data.parquet' WHERE age > 25"

Merge multiple Avro files into one:

data-toolset merge file1.avro file2.avro file3.avro merged_file.avro

Contributing

Contributions are welcome! If you have any suggestions, bug reports, or feature requests, please open an issue on GitHub.

TODO

  • proper online documentation
  • update README
  • add tests for merge
  • create random_sample function
  • create schema_evolution function
  • mature create_sample function
  • optimizations TBD
  • support 3.11+

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

data_toolset-0.1.2.tar.gz (10.1 kB view details)

Uploaded Source

Built Distribution

data_toolset-0.1.2-py3-none-any.whl (12.1 kB view details)

Uploaded Python 3

File details

Details for the file data_toolset-0.1.2.tar.gz.

File metadata

  • Download URL: data_toolset-0.1.2.tar.gz
  • Upload date:
  • Size: 10.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.0 CPython/3.9.16 Darwin/22.2.0

File hashes

Hashes for data_toolset-0.1.2.tar.gz
Algorithm Hash digest
SHA256 8e4ebcca51ab7afeb3f1ad21e704ef67813d3f5b70aebaca264b6ed47d4c9edc
MD5 e1f82294ec64ac5c1b185bdf8572f1d9
BLAKE2b-256 c3e1c52556658e5f52890a33276ef2aea891b810636b63fee3b2c4a3bbf8dde6

See more details on using hashes here.

File details

Details for the file data_toolset-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: data_toolset-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 12.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.0 CPython/3.9.16 Darwin/22.2.0

File hashes

Hashes for data_toolset-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 74b05899c553a24e2418b6f5c0c6b43f7d93390b3d1876da45232f1b3db54166
MD5 ae28eab0aab3e75389f887beb8e8175d
BLAKE2b-256 b4d419a08f4608e61d16eeb32dfaef2b5e299fece533150a69e53bc1d55b3f7f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page