Data helper package
Project description
data-toolz
This repository contains reusable python code for data projects.
The motivation for this project was to create a package which allows to abstract dataset read/write operations from
- destination type (
local
,s3
,<tbd...>
) and - target file type (
delimiter-separated values
,jsonlines
,parquet
)
This would allow to write code easily transferable between local and cloud applications.
installation
pip install data-toolz
usage
datatoolz.filesystem.FileSystem
class gives you an abstraction for accesing both local and remote object using the well know pythonic open()
interface.
from datatoolz.filesystem import FileSystem
for fs_type in ("local", "s3"):
fs = FileSystem(name=fs_type)
# common pythonic interface for both local and remote file systems
with fs.open("my-folder-or-bucket/my-file", mode="wt") as fo:
fo.write("Hello World!")
datatoolz.io.DataIO
class gives you a versatile Reader/Writer interface for handling of typical data files (jsonlines
, dsv
, parquet
)
import pandas as pd
from datatoolz.io import DataIO
df = pd.DataFrame({"col1": [1, 2, 3], "col2": ["a", "b", "c"]})
dio = DataIO() # defaults to "local" FileSystem
# write as parquet
dio.write(dataframe=df, path="my-file.parquet", filetype="parquet")
dio.read(path="my-file.parquet", filetype="parquet")
# write as gzip-compressed jsonlines
dio.write(dataframe=df, path="my-file.json.gz", filetype="jsonlines", gzip=True)
dio.read(path="my-file.json.gz", filetype="jsonlines", gzip=True)
# write as delimiter-separated-values in multiple partitions
dio.write(dataframe=df, path="my-file.tsv", filetype="dsv", sep="\t", partition_by=["col1"])
dio.read(path="my-file.tsv", filetype="dsv", sep="\t")
# write output in multiple chunks per partition
dio.write(dataframe=df, path="my-prefix", filetype="dsv", sep="\t", partition_by=["col1"], suffix=["chunk01.tsv", "chunk02.tsv"])
dio.read(path="my-prefix", filetype="dsv", sep="\t")
datatoolz.logging.JsonLogger
is a wrapper logger for outputting JSON-structured logs
from datatoolz.logging import JsonLogger
logger = JsonLogger(name="my-custom-logger", env="dev")
logger.info(msg="what is my purpose?", meaning_of_life=42)
{"logger": {"application": "my-custom-logger", "environment": "dev"}, "level": "info", "timestamp": "2020-11-03 18:31:07.757534", "message": "what is my purpose?", "extra": {"meaning_of_life": 42}}
It can also be used to decorate functions and log their execution details
from datatoolz.logging import JsonLogger
logger = JsonLogger(name="my-custom-logger", env="dev")
@logger.decorate(msg="my-custom-log", duration=True, memory=True, my_value="my-value", output_length=lambda x: len(x))
def my_func(x, y):
return x + y, x * y
print(my_func(42, 2))
{"logger": {"application": "my-custom-logger", "environment": "dev"}, "level": "info", "timestamp": "2021-03-24 18:10:47.054703", "message": "my-custom-log", "extra": {"function": "my_func", "memory": {"current": 432, "peak": 432}, "duration": 2.5980000000203063e-06, "my_value": "my-value", "output_length": 2}}
(44, 84)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for data_toolz-0.1.11-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 53af2e4b9a0d8884a2ff705869ee7926acf73d70b6ca3aaed4f068cc15fed1c8 |
|
MD5 | c5a6e40ff1e4a898e1575283cdb92ae0 |
|
BLAKE2b-256 | 941fe5e4291cee90a05d22640fe778ebcfe123dc8c9b4218f3ce03dbe3f9e873 |