Skip to main content

Add apply_multi and other bugs fix

Project description

Data4LLM

The simple and useful data process tool for LLM data4llm

data4llm is a json & jsonline process tool, which runs well in millions number level, which facilitates the construction procession of millions of data to continue-pretrain and finetune your LLM. The current framework show below: data4llm.png

install

pip install data4llm

API

SFT

from data4llm.Data4LLM import SFT

1.For file level

(1) merge files

merge all the jsonlines files with shuffle

import glob
from data4llm import Data4LLM

files = glob("dir/*.jsonl")
Data4LLM.merge_files(files=files)

(2) split files to train and test file

from data4llm.Data4LLM import SFT

SFT.split_train_test(file_input="data/test.jsonl", train_ratio=3 / 5)

2. For sample level

Every sample is a json with key-value like dict[str:str], for example:

 {"input":"hello!","output":"Hi, I'm an AI assistant, how can I help you?"}

(1) shuffle

shuffle all the samples in a file, it doesn't optimize the memory usage now, requiring to load all the data to memory in one time

from data4llm.Data4LLM import SFT

SFT.shuffle(file_input="data/test.txt", file_output="result/sh_test.jsonl")
def shuffle(cls, file_input, file_output):
    shuffle: shuffle all the data in input file. warning: it loads all the data in memory
    ile_input: input file path
    file_output: output file path

(2) remove duplicated data

remove duplicate data by sim_hash. There are two function remove_duplicate_BloomFilter and remove_duplicate.

remove_duplicate_BloomFilter : remove duplicate data by sim_hash, which removes data by bloom filter, very fast

from data4llm.Data4LLM import SFT
SFT.remove_duplicate_BloomFilter(file_input="data/test.jsonl", file_output="result/rm_dup_test.json", length=64)
def remove_duplicate_BloomFilter(cls, file_input, file_output, max_row_limit=1000, skip_hash=False, length=64,
                                 log_path="result.log"):
    '''
        remove_duplicate : remove duplicate data by sim_hash, which removes data by bloom filter, very fast
        file_input: input file path with duplicated data
        file_output: result file path
        max_row_limit: the max data number in memory which is useful to save memory
        skip_hash: default false. it needed when call the function in first time, which is used to get the simhash in all the data
        length: the simhash length
        log_path: log file path
        :return: result data number , removed data number
    '''

remove_duplicate : remove duplicate data by sim_hash, which compares data one by one, getting more accurate and finely result but costing massive time

from data4llm.Data4LLM import SFT

SFT.remove_duplicate(file_input="data/test.jsonl", file_output="result/rm_dup_test.json", length=64)

def remove_duplicate(cls, file_input, file_output, ratio=1, max_row_limit=1000, skip_hash=False, length=64,
                 log_path="result.log"):
    remove_duplicate : remove duplicate data by sim_hash, which compares data one by one, getting more accurate and finely result but costing massive time
    file_input: input file path with duplicated data
    file_output: result file path
    ratio: threshold for duplication, which is actually the distance of the two simhash value
    max_row_limit: the max data number in memory which is useful to save memory
    skip_hash: default false. it needed when call the function in first time, which is used to get the simhash in all the data
    length: the simhash length
    log_path: log file path
    :return: result data number , removed data number

(3) apply or apply_multi

The most powerful function in this project, you can apply any process rule by it ,including: process property(rename, remove, add), process content(remove chars, replace chars), filter sample by some rules, derived serval samples from a sample. There are three typical ways: I.filter, II.process attributes, III.from one to serval:

I. filtered by length

Filter sample by returning None I.filter.png

def fn(row: dict[str:str]) -> dict[str:str]:
    if F.len(row) > 1000:
        return None
    return row

SFT.apply(file_input="data/test.txt", file_output="result/result_test.jsonl", fn=fn)
# or apply_multi, which uses three threads for process a file that is useful when the process function contains with network or time costed operation like waiting for LLM's response
SFT.apply_multi(file_input="data/test.txt", file_output="result/result_test.jsonl", fn=fn, num_work=3)

II. concat two properties into one

apply process to every sample II.concat two into one.png

from data4llm.Data4LLM import SFT, F

def fn(row: dict[str:str]) -> dict[str:str]:
    row['input'] = row['instruction']+row['prompt']
    row.pop("instruction")
    row.pop("prompt")
    return row


SFT.apply(file_input="data/test.txt", file_output="result/result_test.jsonl", fn=fn)

III. from one to several

Generate more samples from one sample by returning a list consisting of dict one2more.png

def fn(row: dict[str:str]) -> List[dict[str:str]]:
    arrs = row['input'].split(";")[:-1]
    rows = []
    temp_str = ""
    for i, item in enumerate(arrs):
        if i % 2 != 0:
            output = item.split(":")[0]
            temp_row = {"input": temp_str + "assistant:", "output": output}
            rows.append(temp_row)
        else:
            temp_str += item + ";"
    return rows

SFT.apply(file_input="data/test.txt", file_output="result/result_test.jsonl", fn=fn)

The apply function

def apply(cls, file_input, file_output, fn, max_row_limit=1000, json=None):
    apply_property: apply the json row one by one, including: rename property, remove property, apply content(remove chars, replace chars)
     file_input: input file path
     file_output: output file path
     fn: apply function
     max_row_limit: default=1000, every step to write file and max data num in memory
     json: default=None, it determines json or jsonline, or True/False

(4) show_example

It is very useful to show the result before actually conduct it by show_example:

from data4llm.Data4LLM import SFT
def fn(row):
    row['input'] = row['input'].replace("https://www.baidu.com")
    return row
SFT.show_example(file_input="data/test.txt", fn=fn)

examples:

##### No 1 #####
== Before ==
{'input': 'welcome to https://www.baidu.com #LLM world', 'output': 'I like #LLM'}
== After ==
{'prompt': 'welcome to  LLM world', 'chosen': 'I like LLM'}
##### No 2 #####
== Before ==
{'input': 'hello!', 'output': "Hi, I'm an AI assistant, how can I help you?"}
== After ==
{'prompt': 'hello!', 'chosen': "Hi, I'm an AI assistant, how can I help you?"}
def show_example(cls, file_input, fn, json=None, s=0, e=5):
    '''
    file_input: 
    fn: 
    json: if the file is json or jsonline, default None means it decided by the postfix of th file_input 
    s: default 0 the start row num
    e: default 5 the end row num
    :return: None
    '''

PT

from data4llm.Data4LLM import PT

(1) show_properties

show the json structure

def show_properties(cls, files, s=0, e=5):
        '''
        show the json structure
        :param files:
        :param s:
        :param e:
        :return:
        '''

(2) parse_pages

parse the semi structure json and parse all the token needed together for PT

def parse_pages(cls, files, fn, output_dir):
        '''
        parse the semi structure json and parse all the token needed together fot PT
        :param files:
        :param fn:
        :param output_dir:
        :return:
        '''

(3) merge_files

merge all the txt files

def merge_files(cls, files, output_file="merge_file.txt", max_limit_num=100):
    '''
    merge all the txt files
    :param files: 
    :param output_file: 
    :param max_limit_num: 
    :return: 
    '''

(4) split_train_test

split a file into train and test files

def split_train_test(cls, file_input, train_test_ratio, file_train_output="train.txt", file_test_output="test.txt"):
    '''
    split a file into train and test files
    :param file_input: 
    :param train_test_ratio: 
    :param file_train_output: 
    :param file_test_output: 
    :return: 
    '''

(5) sample

sample

F

A tool class with some useful functions

from data4llm.Data4LLM import F

(1) count

get the sample number of a file

def count(cls, file_input):
    """
    get the sample number of a file
    :param file_input:
    :return:
    """

(2) functions used in apply fn

rename() : rename the property of every sample
repalce(): replace the chars in a json or a property in the json
len(): get the length of the json (only values) of part of json (specify the property like "chosen" only {"chosen"})

def rename(cls, row, mapping: dict[str:str]) -> None
def replace(cls, row, pattern, repl, property=None) -> None
def len(cls, row, property=None) -> int:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

data4llm-0.4.1.tar.gz (13.9 kB view hashes)

Uploaded Source

Built Distribution

data4llm-0.4.1-py3-none-any.whl (12.0 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page