Ivan Marin's representations of the cubic Hecke algebra on 4 strands as Python dictionaries
Project description
Database Cubic Hecke Algebras
This repository contains data for the representations of the
Cubic Hecke Algebra calculated by Ivan Marin.
The original data of Ivan Marin are published in a format which
can be read by Maple.
The purpose of this repository is, to make them available in
a Python like style such that they can be easily installed into
SageMath using pip
.
This repository was created as a part of the SageMath functionality for the cubic Hecke algebras (see Trac ticket #29717)
In addition to Ivan Marin's data it contains coefficients for linear forms on the cubic Hecke algebras on up to four strands satisfying the Markov trace condition (see for example Louis Kauffman: Knots and Physics, sections 7.1 and 7.2). This data has been precomputed with the SageMath functionality introduced by the above mentioned ticket (see Python module create_markov_trace_data.py).
Usage
In Python, it can be used as follows:
>>> from database_cubic_hecke import read_basis
>>> b4 = read_basis()
>>> len(b4)
648
>>> b2 = read_basis(num_strands=2); b2
[[], [1], [-1]]
>>> b3 = read_basis(num_strands=3)
>>> len(b3)
24
>>> from database_cubic_hecke import read_irr
>>> dim_list, repr_list, repr_list_inv = read_irr()
>>> dim_list
[1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 8, 8, 8, 9, 9]
>>> repr_list[5][1]
{(0, 0): c, (0, 1): -1, (1, 1): a}
>>> from math import sqrt
>>> j = (sqrt(3)*1j-1)/2
>>> dim_list, repr_list, repr_list_inv = read_irr((5, 7, 3, j))
>>> repr_list[23][0][(3, 8)]
(1.5+6.06217782649107j)
>>> from database_cubic_hecke import read_reg
>>> dim_list, repr_list, repr_list_inv = read_reg()
>>> dim_list
[648]
>>> [len(m) for m in repr_list[0]]
[1080, 1701, 7862]
>>> [len(m) for m in repr_list_inv[0]]
[1080, 1728, 9370]
>>> dim_list, repr_list, repr_list_inv = read_reg(num_strands=3)
>>> dim_list
[24]
>>> [len(m) for m in repr_list[0]]
[40, 63]
>>> from database_cubic_hecke.markov_trace_coeffs import read_markov
>>> read_markov('U2', (3,5,7,11), num_strands=3)
[0, 11, 0.09090909090909091, 11, 0.09090909090909091, 0, 0, 0, 0, -55, 11, 11,
-4.714285714285714, -0.45454545454545453, 0.09090909090909091, 0, 0, 0, 0,
0.09090909090909091, -0.03896103896103896, -0.45454545454545453, 0, 0]
If you have SymPy installed you can obtain representation matrices directly:
>>> from database_cubic_hecke import irr_reprs_matrices
>>> m1, m2, m3 = irr_reprs_matrices(5)
>>> m1i, m2i, m3i = irr_reprs_matrices(5, inverse=True)
>>> m1 * m1i
Matrix([
[1, 0],
[0, 1]])
>>> m1*m2*m1 == m2*m1*m2
True
>>> m1i*m2i*m1i == m2i*m1i*m2i
True
>>> from database_cubic_hecke import reg_reprs_matrices
>>> m1, m2, m3 = reg_reprs_matrices()
>>> m1.shape
(648, 648)
>>> m1i, m2i = reg_reprs_matrices(inverse=True, num_strands=3)
>>> m1i.shape
(24, 24)
>>> m1i*m2i*m1i == m2i*m1i*m2i
True
>>> from database_cubic_hecke.markov_trace_coeffs import read_markov
>>> from sympy import var
>>> u, v, w, s = var('u, v, w, s')
>>> variables = (u, v, w, s)
>>> read_markov('U2', variables, num_strands=3)
[0, s, 1/s, s, 1/s, 0, 0, 0, 0, -s*v, s, s, -s*u/w, -v/s, 1/s,
0, 0, 0, 0, 1/s, -u/(s*w), -v/s, 0, 0]
The usage in Sage will be implicitely via the new class CubicHeckeAlgebra
according to
the Trac ticket #29717. But anyway, it can also
be used indenpendently, for example:
sage: from database_cubic_hecke import read_irr
sage: F = CyclotomicField(3)
sage: L.<a, b, c> = LaurentPolynomialRing(F)
sage: T = L.gens_dict_recursive()
sage: T['j'] = T['zeta3']
sage: T.pop('zeta3')
sage: irr = read_irr(tuple(T.values()))
sage: dim_list, repr_list, repr_list_inv= irr
sage: m1d, m2d , m3d = repr_list[23]
sage: d = dim_list[23]
sage: m1 = matrix(d, d, m1d)
sage: m2 = matrix(d, d, m2d)
sage: m3 = matrix(d, d, m3d)
sage: m1
[ c 0 0 0 0 0 0 0 0]
[ b^2 + a*c b 0 0 0 0 (-zeta3)*b*c 0 0]
[ b 1 a 0 0 0 c 0 0]
[ 0 0 0 a 0 0 -c (-zeta3 - 1)*c a + zeta3*b]
[ zeta3*a - b 0 0 0 b 0 0 0 0]
[ zeta3*a 0 0 0 b a 0 0 0]
[ 0 0 0 0 0 0 c 0 0]
[ 0 0 0 0 0 0 0 c 0]
[ 0 0 0 0 0 0 0 zeta3*c b]
sage: m1*m2*m1 == m2*m1*m2
True
sage: m3*m2*m3 == m2*m3*m2
True
sage: m3*m1 == m1*m3
True
sage: from database_cubic_hecke import read_reg
sage: R.<u, v, w> = ZZ[]
sage: B = R.localization(w)
sage: T = B.gens_dict_recursive()
sage: reg = read_reg(tuple(T.values()))
sage: dim_list, repr_list, repr_list_inv= reg
sage: m1d, m2d , m3d = repr_list[0]
sage: d = dim_list[0]
sage: m1 = matrix(d, d, m1d)
sage: m2 = matrix(d, d, m2d)
sage: m3 = matrix(d, d, m3d)
sage: m1
648 x 648 sparse matrix over Multivariate Polynomial Ring in u, v, w over Integer Ring localized at (w,) (use the '.str()' method to see the entries)
sage: m1*m2*m1 == m2*m1*m2
True
sage: m3*m2*m3 == m2*m3*m2
True
sage: m3*m1 == m1*m3
True
To build a new release, the files containing the data in Python syntax can be upgraded with the create_marin_data script. There is a workflow to run this script and build a new release if differences are detected. It can be triggered manually.
Installation
Python
pip install database_cubic_hecke
or
pip install database_cubic_hecke==2022.3.5
if you want to install a former version.
SageMath
After release of the above mentioned Trac ticket, the database can be installed in Sage by:
sage -i database_cubic_hecke
This will contain integration with the cubic Hecke algebra functionality of Sage. Before, or to use it independent on the new Sage functionality the installation works as follows:
sage -pip install database_cubic_hecke
or
sage -pip install database_cubic_hecke==2022.3.5
for a special version.
Versioning
Version numbers are automatically generated on a manually triggered workflow
Check version changed
if differences to the original databases are detected.
They follow the scheme
<year>.<month>.<day>
with respect to the date the workflow is triggered.
Help
If you note a divergence between this repository and the original data in case the current release is older than a month please create an issue about that.
Credits
Many thanks to Ivan Marin to make his data available for their use in Sage.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file database_cubic_hecke-2022.4.4.tar.gz
.
File metadata
- Download URL: database_cubic_hecke-2022.4.4.tar.gz
- Upload date:
- Size: 436.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 553654a4ce987a277fe956a9a450d738bd1f58b96c45499075e28f2bca927ae9 |
|
MD5 | 7b1dc2d0cc396c36774c45ce73133419 |
|
BLAKE2b-256 | 5da7dd4c6e5d71ab4823e729d5e6ec659cb8640381070ffbebe325b663b9073f |
File details
Details for the file database_cubic_hecke-2022.4.4-py3-none-any.whl
.
File metadata
- Download URL: database_cubic_hecke-2022.4.4-py3-none-any.whl
- Upload date:
- Size: 440.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8c9f2cf6975e51962c83ec8d10406bedeac009038123fd3ad33a9435eb20e277 |
|
MD5 | 87f2014d8a6ea36db653ff68377c2982 |
|
BLAKE2b-256 | 04be849a98e3e8ec5096dd8aaefc7899b07abc0e227e1b511d6ed6ef33323ee6 |