Skip to main content

Ivan Marin's representations of the cubic Hecke algebra on 4 strands as Python dictionaries

Project description

Database Cubic Hecke Algebras

This repository contains data for the representations of the Cubic Hecke Algebra calculated by Ivan Marin. The original data of Ivan Marin are published in a format which can be read by Maple. The purpose of this repository is, to make them available in a Python like style such that they can be easily installed into SageMath using pip.

This repository was created as a part of the SageMath functionality for the cubic Hecke algebras (see Trac ticket #29717)

In addition to Ivan Marin's data it contains coefficients for linear forms on the cubic Hecke algebras on up to four strands satisfying the Markov trace condition (see for example Louis Kauffman: Knots and Physics, sections 7.1 and 7.2). This data has been precomputed with the SageMath functionality introduced by the above mentioned ticket (see Python module create_markov_trace_data.py).

Usage

In Python, it can be used as follows:

>>> from database_cubic_hecke import read_basis
>>> b4 = read_basis()
>>> len(b4)
648
>>> b2 = read_basis(num_strands=2); b2
[[], [1], [-1]]
>>> b3 = read_basis(num_strands=3)
>>> len(b3)
24

>>> from database_cubic_hecke import read_irr
>>> dim_list, repr_list, repr_list_inv = read_irr()
>>> dim_list
[1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 8, 8, 8, 9, 9]
>>> repr_list[5][1]
{(0, 0): c, (0, 1): -1, (1, 1): a}
>>> from math import sqrt
>>> j = (sqrt(3)*1j-1)/2
>>> dim_list, repr_list, repr_list_inv = read_irr((5, 7, 3, j))
>>> repr_list[23][0][(3, 8)]
(1.5+6.06217782649107j)

>>> from database_cubic_hecke import read_reg
>>> dim_list, repr_list, repr_list_inv = read_reg()
>>> dim_list
[648]
>>> [len(m) for m in repr_list[0]]
[1080, 1701, 7862]
>>> [len(m) for m in repr_list_inv[0]]
[1080, 1728, 9370]
>>> dim_list, repr_list, repr_list_inv = read_reg(num_strands=3)
>>> dim_list
[24]
>>> [len(m) for m in repr_list[0]]
[40, 63]

>>> from database_cubic_hecke.markov_trace_coeffs import read_markov
>>> read_markov('U2', (3,5,7,11), num_strands=3)
[0, 11, 0.09090909090909091, 11, 0.09090909090909091, 0, 0, 0, 0, -55, 11, 11,
 -4.714285714285714, -0.45454545454545453, 0.09090909090909091, 0, 0, 0, 0,
 0.09090909090909091, -0.03896103896103896, -0.45454545454545453, 0, 0]

If you have SymPy installed you can obtain representation matrices directly:

>>> from database_cubic_hecke import irr_reprs_matrices
>>> m1, m2, m3 = irr_reprs_matrices(5)
>>> m1i, m2i, m3i = irr_reprs_matrices(5, inverse=True)
>>> m1 * m1i
Matrix([
[1, 0],
[0, 1]])
>>> m1*m2*m1 == m2*m1*m2
True
>>> m1i*m2i*m1i == m2i*m1i*m2i
True

>>> from database_cubic_hecke import reg_reprs_matrices
>>> m1, m2, m3 = reg_reprs_matrices()
>>> m1.shape
(648, 648)
>>> m1i, m2i = reg_reprs_matrices(inverse=True, num_strands=3)
>>> m1i.shape
(24, 24)
>>> m1i*m2i*m1i == m2i*m1i*m2i
True

>>> from database_cubic_hecke.markov_trace_coeffs import read_markov
>>> from sympy import var
>>> u, v, w, s = var('u, v, w, s')
>>> variables = (u, v, w, s)
>>> read_markov('U2', variables, num_strands=3)
[0, s, 1/s, s, 1/s, 0, 0, 0, 0, -s*v, s, s, -s*u/w, -v/s, 1/s,
0, 0, 0, 0, 1/s, -u/(s*w), -v/s, 0, 0]

The usage in Sage will be implicitely via the new class CubicHeckeAlgebra according to the Trac ticket #29717. But anyway, it can also be used indenpendently, for example:

sage: from database_cubic_hecke import read_irr
sage: F = CyclotomicField(3)
sage: L.<a, b, c> = LaurentPolynomialRing(F)
sage: T = L.gens_dict_recursive()
sage: T['j'] = T['zeta3']
sage: T.pop('zeta3')
sage: irr = read_irr(tuple(T.values()))
sage: dim_list, repr_list, repr_list_inv= irr
sage: m1d, m2d , m3d = repr_list[23]
sage: d = dim_list[23]
sage: m1 = matrix(d, d, m1d)
sage: m2 = matrix(d, d, m2d)
sage: m3 = matrix(d, d, m3d)
sage: m1
[             c              0              0              0              0              0              0              0              0]
[     b^2 + a*c              b              0              0              0              0   (-zeta3)*b*c              0              0]
[             b              1              a              0              0              0              c              0              0]
[             0              0              0              a              0              0             -c (-zeta3 - 1)*c    a + zeta3*b]
[   zeta3*a - b              0              0              0              b              0              0              0              0]
[       zeta3*a              0              0              0              b              a              0              0              0]
[             0              0              0              0              0              0              c              0              0]
[             0              0              0              0              0              0              0              c              0]
[             0              0              0              0              0              0              0        zeta3*c              b]

sage: m1*m2*m1 == m2*m1*m2
True
sage: m3*m2*m3 == m2*m3*m2
True
sage: m3*m1 == m1*m3
True


sage: from database_cubic_hecke import read_reg
sage: R.<u, v, w> = ZZ[]
sage: B = R.localization(w)
sage: T = B.gens_dict_recursive()
sage: reg = read_reg(tuple(T.values()))
sage: dim_list, repr_list, repr_list_inv= reg
sage: m1d, m2d , m3d = repr_list[0]
sage: d = dim_list[0]
sage: m1 = matrix(d, d, m1d)
sage: m2 = matrix(d, d, m2d)
sage: m3 = matrix(d, d, m3d)
sage: m1
648 x 648 sparse matrix over Multivariate Polynomial Ring in u, v, w over Integer Ring localized at (w,) (use the '.str()' method to see the entries)

sage: m1*m2*m1 == m2*m1*m2
True
sage: m3*m2*m3 == m2*m3*m2
True
sage: m3*m1 == m1*m3
True

To build a new release, the files containing the data in Python syntax can be upgraded with the create_marin_data script. There is a workflow to run this script and build a new release if differences are detected. It can be triggered manually.

Installation

Python

pip install database_cubic_hecke

or

pip install database_cubic_hecke==2022.3.5

if you want to install a former version.

SageMath

After release of the above mentioned Trac ticket, the database can be installed in Sage by:

sage -i database_cubic_hecke

This will contain integration with the cubic Hecke algebra functionality of Sage. Before, or to use it independent on the new Sage functionality the installation works as follows:

sage -pip install database_cubic_hecke

or

sage -pip install database_cubic_hecke==2022.3.5

for a special version.

Open in Gitpod

Versioning

Version numbers are automatically generated on a manually triggered workflow Check version changed if differences to the original databases are detected. They follow the scheme

<year>.<month>.<day>

with respect to the date the workflow is triggered.

Help

If you note a divergence between this repository and the original data in case the current release is older than a month please create an issue about that.

Credits

Many thanks to Ivan Marin to make his data available for their use in Sage.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

database_cubic_hecke-2022.4.4.tar.gz (436.2 kB view details)

Uploaded Source

Built Distribution

database_cubic_hecke-2022.4.4-py3-none-any.whl (440.3 kB view details)

Uploaded Python 3

File details

Details for the file database_cubic_hecke-2022.4.4.tar.gz.

File metadata

File hashes

Hashes for database_cubic_hecke-2022.4.4.tar.gz
Algorithm Hash digest
SHA256 553654a4ce987a277fe956a9a450d738bd1f58b96c45499075e28f2bca927ae9
MD5 7b1dc2d0cc396c36774c45ce73133419
BLAKE2b-256 5da7dd4c6e5d71ab4823e729d5e6ec659cb8640381070ffbebe325b663b9073f

See more details on using hashes here.

File details

Details for the file database_cubic_hecke-2022.4.4-py3-none-any.whl.

File metadata

File hashes

Hashes for database_cubic_hecke-2022.4.4-py3-none-any.whl
Algorithm Hash digest
SHA256 8c9f2cf6975e51962c83ec8d10406bedeac009038123fd3ad33a9435eb20e277
MD5 87f2014d8a6ea36db653ff68377c2982
BLAKE2b-256 04be849a98e3e8ec5096dd8aaefc7899b07abc0e227e1b511d6ed6ef33323ee6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page