Skip to main content

Sqlalchemy adapter for Databend

Project description

databend-sqlalchemy

Databend dialect for SQLAlchemy.

Installation

The package is installable through PIP::

pip install databend-sqlalchemy

Usage

The DSN format is similar to that of regular Postgres::

    from sqlalchemy import create_engine, text
    from sqlalchemy.engine.base import Connection, Engine
    engine = create_engine(
        f"databend://{username}:{password}@{host_port_name}/{database_name}?sslmode=disable"
    )
    connection = engine.connect()
    result = connection.execute(text("SELECT 1"))
    assert len(result.fetchall()) == 1

    import connector
    cursor = connector.connect('databend://root:@localhost:8000?sslmode=disable').cursor()
    cursor.execute('SELECT * FROM test')
    # print(cursor.fetchone())
    # print(cursor.fetchall())
    for row in cursor:
        print(row)

Merge Command Support

Databend SQLAlchemy supports upserts via its Merge custom expression. See Merge for full documentation.

The Merge command can be used as below::

    from sqlalchemy.orm import sessionmaker
    from sqlalchemy import MetaData, create_engine
    from databend_sqlalchemy.databend_dialect import Merge

    engine = create_engine(db.url, echo=False)
    session = sessionmaker(bind=engine)()
    connection = engine.connect()

    meta = MetaData()
    meta.reflect(bind=session.bind)
    t1 = meta.tables['t1']
    t2 = meta.tables['t2']

    merge = Merge(target=t1, source=t2, on=t1.c.t1key == t2.c.t2key)
    merge.when_matched_then_delete().where(t2.c.marked == 1)
    merge.when_matched_then_update().where(t2.c.isnewstatus == 1).values(val = t2.c.newval, status=t2.c.newstatus)
    merge.when_matched_then_update().values(val=t2.c.newval)
    merge.when_not_matched_then_insert().values(val=t2.c.newval, status=t2.c.newstatus)
    connection.execute(merge)

Table Options

Databend SQLAlchemy supports databend specific table options for Engine, Cluster Keys and Transient tables

The table options can be used as below::

    from sqlalchemy import Table, Column
    from sqlalchemy import MetaData, create_engine

    engine = create_engine(db.url, echo=False)

    meta = MetaData()
    # Example of Transient Table
    t_transient = Table(
        "t_transient",
        meta,
        Column("c1", Integer),
        databend_transient=True,
    )

    # Example of Engine
    t_engine = Table(
        "t_engine",
        meta,
        Column("c1", Integer),
        databend_engine='Memory',
    )

    # Examples of Table with Cluster Keys
    t_cluster_1 = Table(
        "t_cluster_1",
        meta,
        Column("c1", Integer),
        databend_cluster_by=[c1],
    )
    #
    c = Column("id", Integer)
    c2 = Column("Name", String)
    t_cluster_2 = Table(
        't_cluster_2',
        meta,
        c,
        c2,
        databend_cluster_by=[cast(c, String), c2],
    )

    meta.create_all(engine)

Compatibility

  • If databend version >= v0.9.0 or later, you need to use databend-sqlalchemy version >= v0.1.0.
  • The databend-sqlalchemy use databend-py as internal driver when version < v0.4.0, but when version >= v0.4.0 it use databend driver python binding as internal driver. The only difference between the two is that the connection parameters provided in the DSN are different. When using the corresponding version, you should refer to the connection parameters provided by the corresponding Driver.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

databend_sqlalchemy-0.4.7.tar.gz (28.2 kB view details)

Uploaded Source

Built Distribution

databend_sqlalchemy-0.4.7-py3-none-any.whl (24.6 kB view details)

Uploaded Python 3

File details

Details for the file databend_sqlalchemy-0.4.7.tar.gz.

File metadata

  • Download URL: databend_sqlalchemy-0.4.7.tar.gz
  • Upload date:
  • Size: 28.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for databend_sqlalchemy-0.4.7.tar.gz
Algorithm Hash digest
SHA256 020a4ac840389e695f9d959b96902a82e90491fd1d146311c8532b1c4cd67128
MD5 8c1675dc428c50ff5d90902c28b0f400
BLAKE2b-256 680f547ec6375ee9a9b1584aed374854466fdf9d10de5f57fc5ca05e611ada7c

See more details on using hashes here.

File details

Details for the file databend_sqlalchemy-0.4.7-py3-none-any.whl.

File metadata

File hashes

Hashes for databend_sqlalchemy-0.4.7-py3-none-any.whl
Algorithm Hash digest
SHA256 d3c0c2c1667bb40ba2debca0fc9ba995fcc0416b03750ef8458c8aa55b016c0d
MD5 ddbe7da9621b434fcb29bd313a45a24d
BLAKE2b-256 4a302d16b96d5632f0513bb654655c2b71526dd039634347bf8247be39e9e8b1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page