Skip to main content

Marshal dataclasses to/from JSON and Python dict objects, and add support for field properties with initial values.

Project description

https://img.shields.io/pypi/v/dataclass-wizard.svg https://img.shields.io/pypi/pyversions/dataclass-wizard.svg https://travis-ci.com/rnag/dataclass-wizard.svg?branch=main Documentation Status Updates

This library provides a set of simple, yet elegant wizarding tools for interacting with the Python dataclasses module.

Full documentation is at:

Features

Here are the supported features that dataclass-wizard currently provides:

  • JSON (de)serialization: marshal dataclasses to/from JSON and Python dict objects.

  • Field properties: support for using properties with default values in dataclass instances.

Usage

Using the built-in JSON marshalling support for dataclasses:

from dataclasses import dataclass, field
from typing import Optional, List, Tuple

from dataclass_wizard import JSONSerializable


@dataclass
class MyClass(JSONSerializable):
    my_str: Optional[str]
    is_active_tuple: Tuple[bool, ...]
    list_of_int: List[int] = field(default_factory=list)


string = """{"my_str": 20, "ListOfInt": ["1", "2", 3], "isActiveTuple": ["true", "false", 1, false]}"""
c = MyClass.from_json(string)
print(repr(c))
# prints:
#   MyClass(my_str='20', is_active_tuple=(True, False, True, False), list_of_int=[1, 2, 3])

print(c.to_json())
# prints:
#   {"myStr": "20", "isActiveTuple": [true, false, true, false], "listOfInt": [1, 2, 3]}

… and with the property_wizard, which provides supports for field properties with default values in dataclasses:

from dataclasses import dataclass
from typing import Union

from dataclass_wizard import property_wizard


@dataclass
class Vehicle(metaclass=property_wizard):

    # Note: The example below uses the default value for the annotated type
    # (0 here, because `int` appears first). The right-hand value assigned to
    # `wheels` is ignored, as it is simply re-declared by the property. To
    # specify a default value of 4, comment out the `wheels` field and
    # replace it with the `_wheels` declaration below.
    #   _wheels: Union[int, str] = 4
    wheels: Union[int, str] = 0

    @property
    def wheels(self) -> int:
        return self._wheels

    @wheels.setter
    def wheels(self, wheels: Union[int, str]):
        self._wheels = int(wheels)


if __name__ == '__main__':
    v = Vehicle()
    print(v)
    # prints:
    #   Vehicle(wheels=0)

    v = Vehicle(wheels=3)
    print(v)
    # prints:
    #   Vehicle(wheels=3)

    v = Vehicle('6')
    print(v)
    # prints:
    #   Vehicle(wheels=6)

    assert v.wheels == 6, 'The constructor should use our setter method'

    # Confirm that we go through our setter method
    v.wheels = '123'
    assert v.wheels == 123

Installing Dataclass Wizard and Supported Versions

The Dataclass Wizard library is available on PyPI:

$ python -m pip install dataclass-wizard

The dataclass-wizard library officially supports Python 3.6 or higher.

JSON Marshalling

JSONSerializable is a Mixin class which provides the following helper methods that are useful for serializing (and loading) a dataclass instance to/from JSON, as defined by the AbstractJSONWizard interface.

Method

Example

Description

from_json

item = Product.from_json(string)

Converts a JSON string to an instance of the dataclass, or a list of the dataclass instances.

from_list

list_of_item = Product.from_list(l)

Converts a Python list object to a list of the dataclass instances.

from_dict

item = Product.from_dict(d)

Converts a Python dict object to an instance of the dataclass.

to_dict

d = item.to_dict()

Converts the dataclass instance to a Python dict object that is JSON serializable.

to_json

string = item.to_json()

Converts the dataclass instance to a JSON string representation.

Additionally, it adds a default __str__ method to subclasses, which will pretty print the JSON representation of an object; this is quite useful for debugging purposes. Whenever you invoke print(obj) or str(obj), for example, it’ll call this method which will format the dataclass object as a prettified JSON string. If you prefer a __str__ method to not be added, you can pass in str=False when extending from the Mixin class as mentioned here.

Note that the __repr__ method, which is implemented by the dataclass decorator, is also available. To invoke the Python object representation of the dataclass instance, you can instead use repr(obj) or f'{obj!r}'.

To mark a dataclass as being JSON serializable (and de-serializable), simply sub-class from JSONSerializable as shown below. You can also extend from the class alias JSONWizard, if you prefer to use that instead.

Here is a (more) complete example of using the JSONSerializable Mixin class:

from collections import defaultdict
from dataclasses import dataclass, field
from datetime import datetime
from typing import Optional, List, Literal, Union, Dict, Any, NamedTuple, DefaultDict

from dataclass_wizard import JSONSerializable


@dataclass
class MyTestClass(JSONSerializable):
    my_ledger: Dict[str, Any]
    the_answer_to_life: Optional[int]
    people: List['Person']
    is_enabled: bool = True


@dataclass
class Person:
    name: 'Name'
    age: int
    birthdate: datetime
    gender: Literal['M', 'F', 'N/A']
    occupation: Union[str, List[str]]
    hobbies: DefaultDict[str, List[str]] = field(
        default_factory=lambda: defaultdict(list))


class Name(NamedTuple):
    """A person's name"""
    first: str
    last: str
    salutation: Optional[Literal['Mr.', 'Mrs.', 'Ms.', 'Dr.']] = 'Mr.'


data = {
    'myLedger': {
        'Day 1': 'some details',
        'Day 17': ['a', 'sample', 'list']
    },
    'theAnswerTOLife': '42',
    'People': [
        {
            'name': ('Roberto', 'Fuirron'),
            'age': 21,
            'birthdate': '1950-02-28T17:35:20Z',
            'gender': 'M',
            'occupation': ['sailor', 'fisher'],
            'Hobbies': {'M-F': ('chess', 123, 'reading'), 'Sat-Sun': ['parasailing']}
        },
        {
            'name': ('Janice', 'Darr', 'Dr.'),
            'age': 45,
            'birthdate': '1971-11-05 05:10:59',
            'gender': 'F',
            'occupation': 'Dentist'
        }
    ]
}

c = MyTestClass.from_dict(data)

print(repr(c))
# prints the following result on a single line:
#   MyTestClass(
#       my_ledger={'Day 1': 'some details', 'Day 17': ['a', 'sample', 'list']},
#       the_answer_to_life=42,
#       people=[
#           Person(
#               name=Name(first='Roberto', last='Fuirron', salutation='Mr.'),
#               age=21, birthdate=datetime.datetime(1950, 2, 28, 17, 35, 20, tzinfo=datetime.timezone.utc),
#               gender='M', occupation=['sailor', 'fisher'],
#               hobbies=defaultdict(<class 'list'>, {'M-F': ['chess', '123', 'reading'], 'Sat-Sun': ['parasailing']})
#           ),
#           Person(
#               name=Name(first='Janice', last='Darr', salutation='Dr.'),
#               age=45, birthdate=datetime.datetime(1971, 11, 5, 5, 10, 59),
#               gender='F', occupation='Dentist',
#               hobbies=defaultdict(<class 'list'>, {})
#           )
#       ], is_enabled=True)

# calling `print` on the object invokes the `__str__` method, which will
# pretty-print the JSON representation of the object by default. You can
# also call the `to_json` method to print the JSON string on a single line.

print(c)
# prints:
#     {
#       "myLedger": {
#         "Day 1": "some details",
#         "Day 17": [
#           "a",
#           "sample",
#           "list"
#         ]
#       },
#       "theAnswerToLife": 42,
#       "people": [
#         {
#           "name": [
#             "Roberto",
#             "Fuirron",
#             "Mr."
#           ],
#           "age": 21,
#           "birthdate": "1950-02-28T17:35:20Z",
#           "gender": "M",
#           "occupation": [
#             "sailor",
#             "fisher"
#           ],
#           "hobbies": {
#             "M-F": [
#               "chess",
#               "123",
#               "reading"
#             ],
#             "Sat-Sun": [
#               "parasailing"
#             ]
#           }
#         },
#         {
#           "name": [
#             "Janice",
#             "Darr",
#             "Dr."
#           ],
#           "age": 45,
#           "birthdate": "1971-11-05T05:10:59",
#           "gender": "F",
#           "occupation": "Dentist",
#           "hobbies": {}
#         }
#       ],
#       "isEnabled": true
#     }

Field Properties

The Python dataclasses library has some key limitations with how it currently handles properties and default values.

The dataclass-wizard package natively provides support for using field properties with default values in dataclasses. The main use case here is to assign an initial value to the field property, if one is not explicitly passed in via the constructor method.

To use it, simply import the property_wizard helper function, and add it as a metaclass on any dataclass where you would benefit from using field properties with default values. The metaclass also pairs well with the JSONSerializable mixin class.

For more examples and important how-to’s on properties with default values, refer to the Using Field Properties section in the documentation.

Credits

This package was created with Cookiecutter and the rnag/cookiecutter-pypackage project template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dataclass-wizard-0.4.1.tar.gz (59.9 kB view details)

Uploaded Source

Built Distribution

dataclass_wizard-0.4.1-py2.py3-none-any.whl (40.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file dataclass-wizard-0.4.1.tar.gz.

File metadata

  • Download URL: dataclass-wizard-0.4.1.tar.gz
  • Upload date:
  • Size: 59.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.0

File hashes

Hashes for dataclass-wizard-0.4.1.tar.gz
Algorithm Hash digest
SHA256 054aa0fdec5ca2802bc3409cfdae704d477abe1a413a000e18a8bc87ffc39aeb
MD5 e3b88f4f8d769ab6675cd60f2bc137ff
BLAKE2b-256 a31d5d2f23bf89986af82130ef4c49a382d333e583a3f80e975ca9a28f3ffc2b

See more details on using hashes here.

File details

Details for the file dataclass_wizard-0.4.1-py2.py3-none-any.whl.

File metadata

  • Download URL: dataclass_wizard-0.4.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 40.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.0

File hashes

Hashes for dataclass_wizard-0.4.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 0d8687753b85000baa73af7fad705477bddd4b7c35577e6e113504726aac8525
MD5 a9119d6964c6d5f37e264f7cc2ab0e64
BLAKE2b-256 021c42010ac27360749d10532164b472310154bd6b756aa0fa4092513954206b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page