Skip to main content

JSON schema generation from dataclasses

Project description

A library to generate JSON Schema from python 3.7 dataclasses. Python 3.6 is supported through the dataclasses backport. Aims to be a more lightweight alternative to similar projects such as marshmallow & pydantic.

Feature Overview

  • Support for draft-04, draft-06, Swagger 2.0 & OpenAPI 3 schema types

  • Serialisation and deserialisation

  • Data validation against the generated schema

  • APISpec support. Example below:

Installation

~$ pip install dataclasses-jsonschema

For improved validation performance using fastjsonschema, install with:

~$ pip install dataclasses-jsonschema[fast-validation]

Examples

from dataclasses import dataclass

from dataclasses_jsonschema import JsonSchemaMixin


@dataclass
class Point(JsonSchemaMixin):
    "A 2D point"
    x: float
    y: float

Schema Generation

>>> pprint(Point.json_schema())
{
    'description': 'A 2D point',
    'type': 'object',
    'properties': {
        'x': {'format': 'float', 'type': 'number'},
        'y': {'format': 'float', 'type': 'number'}
    },
    'required': ['x', 'y']
}

Data Serialisation

>>> Point(x=3.5, y=10.1).to_dict()
{'x': 3.5, 'y': 10.1}

Deserialisation

>>> Point.from_dict({'x': 3.14, 'y': 1.5})
Point(x=3.14, y=1.5)
>>> Point.from_dict({'x': 3.14, y: 'wrong'})
dataclasses_jsonschema.ValidationError: 'wrong' is not of type 'number'

Generating multiple schemas

from dataclasses_jsonschema import JsonSchemaMixin, SchemaType

@dataclass
class Address(JsonSchemaMixin):
    """Postal Address"""
    building: str
    street: str
    city: str

@dataclass
class Company(JsonSchemaMixin):
    """Company Details"""
    name: str
    address: Address

>>> pprint(JsonSchemaMixin.all_json_schemas(schema_type=SchemaType.SWAGGER_V3))
{'Address': {'description': 'Postal Address',
             'properties': {'building': {'type': 'string'},
                            'city': {'type': 'string'},
                            'street': {'type': 'string'}},
             'required': ['building', 'street', 'city'],
             'type': 'object'},
 'Company': {'description': 'Company Details',
             'properties': {'address': {'$ref': '#/components/schemas/Address'},
                            'name': {'type': 'string'}},
             'required': ['name', 'address'],
             'type': 'object'}}

Custom validation using NewType

from dataclasses_jsonschema import JsonSchemaMixin, FieldEncoder

PhoneNumber = NewType('PhoneNumber', str)

class PhoneNumberField(FieldEncoder):

    @property
    def json_schema(self):
        return {'type': 'string', 'pattern': r'^(\([0-9]{3}\))?[0-9]{3}-[0-9]{4}$'}

JsonSchemaMixin.register_field_encoders({PhoneNumber: PhoneNumberField()})

@dataclass
class Person(JsonSchemaMixin):
    name: str
    phone_number: PhoneNumber

For more examples see the tests

APISpec Plugin

New in v2.5.0

OpenAPI & Swagger specs can be generated using the apispec plugin:

from typing import Optional, List
from dataclasses import dataclass

from apispec import APISpec
from apispec_webframeworks.flask import FlaskPlugin
from flask import Flask, jsonify
import pytest

from dataclasses_jsonschema.apispec import DataclassesPlugin
from dataclasses_jsonschema import JsonSchemaMixin


# Create an APISpec
spec = APISpec(
    title="Swagger Petstore",
    version="1.0.0",
    openapi_version="3.0.2",
    plugins=[FlaskPlugin(), DataclassesPlugin()],
)


@dataclass
class Category(JsonSchemaMixin):
    """Pet category"""
    name: str
    id: Optional[int]

@dataclass
class Pet(JsonSchemaMixin):
    """A pet"""
    categories: List[Category]
    name: str


app = Flask(__name__)


@app.route("/random")
def random_pet():
    """A cute furry animal endpoint.
    ---
    get:
      description: Get a random pet
      responses:
        200:
          content:
            application/json:
              schema:
                $ref: Pet
    """
    pet = get_random_pet()
    return jsonify(pet.to_dict())

# Dependant schemas (e.g. 'Category') are added automatically
spec.components.schema("Pet", schema=Pet)
with app.test_request_context():
    spec.path(view=random_pet)

TODO

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file dataclasses-jsonschema-rereleased-2.12.2.tar.gz.

File metadata

  • Download URL: dataclasses-jsonschema-rereleased-2.12.2.tar.gz
  • Upload date:
  • Size: 25.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.5

File hashes

Hashes for dataclasses-jsonschema-rereleased-2.12.2.tar.gz
Algorithm Hash digest
SHA256 a75791f3f1caf1acbc0699ab2988d0613f27a1661fb721fa6aaecc44e6c714c8
MD5 71bdd36e293ef6fc95d232abdf87b286
BLAKE2b-256 2e46f517db7364b8250996e95e26e04f889de0275844d0b6c56b0938dce24101

See more details on using hashes here.

File details

Details for the file dataclasses_jsonschema_rereleased-2.12.2-py3-none-any.whl.

File metadata

File hashes

Hashes for dataclasses_jsonschema_rereleased-2.12.2-py3-none-any.whl
Algorithm Hash digest
SHA256 73a8ca281dea719d1282187f6f718ebad31aa8923ec7bbe173d65b2d335b2585
MD5 de23a4b75ebe278fd81a7d28317c5a39
BLAKE2b-256 9aa0517477ac4f0972484e05161f5ec4de4e8209ce606b249f25b246f334648f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page