JSON schema generation from dataclasses
Project description
A lightweight library to generate JSON Schema from python 3.7 dataclasses. Python 3.6 is supported through the dataclasses backport. Also supports the following features:
Generate schemas that can be embedded into Swagger / OpenAPI 2.0 and 3.0 specs
Serialisation and deserialisation
Data validation against the generated schema
Installation
~$ pip install dataclasses-jsonschema
For improved validation performance using PyValico, install with:
~$ pip install dataclasses-jsonschema[fast-validation]
Examples
from dataclasses import dataclass
from dataclasses_jsonschema import JsonSchemaMixin
@dataclass
class Point(JsonSchemaMixin):
"A 2D point"
x: float
y: float
Generate the schema:
>>> pprint(Point.json_schema())
{
'description': 'A 2D point',
'type': 'object',
'properties': {
'x': {'format': 'float', 'type': 'number'},
'y': {'format': 'float', 'type': 'number'}
},
'required': ['x', 'y']
}
Serialise data:
>>> Point(x=3.5, y=10.1).to_dict()
{'x': 3.5, 'y': 10.1}
Deserialise data:
>>> Point.from_dict({'x': 3.14, 'y': 1.5})
Point(x=3.14, y=1.5)
>>> Point.from_dict({'x': 3.14, y: 'wrong'})
dataclasses_jsonschema.ValidationError: 'wrong' is not of type 'number'
Generate a schema for embedding into an API spec:
from dataclasses_jsonschema import JsonSchemaMixin, SchemaType
@dataclass
class Address(JsonSchemaMixin):
"""Postal Address"""
building: str
street: str
city: str
@dataclass
class Company(JsonSchemaMixin):
"""Company Details"""
name: str
address: Address
>>> pprint(JsonSchemaMixin.all_json_schemas(schema_type=SchemaType.SWAGGER_V3))
{'Address': {'description': 'Postal Address',
'properties': {'building': {'type': 'string'},
'city': {'type': 'string'},
'street': {'type': 'string'}},
'required': ['building', 'street', 'city'],
'type': 'object'},
'Company': {'description': 'Company Details',
'properties': {'address': {'$ref': '#/components/schemas/Address'},
'name': {'type': 'string'}},
'required': ['name', 'address'],
'type': 'object'}}
Custom validation rules can be added using NewType:
from dataclasses_jsonschema import JsonSchemaMixin, FieldEncoder
PhoneNumber = NewType('PhoneNumber', str)
class PhoneNumberField(FieldEncoder):
@property
def json_schema(self):
return {'type': 'string', 'pattern': r'^(\([0-9]{3}\))?[0-9]{3}-[0-9]{4}$'}
JsonSchemaMixin.register_field_encoders({PhoneNumber: PhoneNumberField()})
@dataclass
class Person(JsonSchemaMixin):
name: str
phone_number: PhoneNumber
For more examples see the tests
TODO
Add benchmarks against alternatives such as pydantic and marshmallow
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file dataclasses-jsonschema-2.1.1.tar.gz
.
File metadata
- Download URL: dataclasses-jsonschema-2.1.1.tar.gz
- Upload date:
- Size: 12.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 171201a03f11096eb1e7756296f43b82651163c9ac8a634be81e1003551cd55c |
|
MD5 | 27fde17f6cb82712761990e04ccc23f7 |
|
BLAKE2b-256 | 7cec1c639f3e85052ce96598623dffec83069398623f35968ae1be0759eb6e63 |