Skip to main content

Serialize/deserialize Python dataclasses to various other data formats

Project description

dataclasses_serialization

dataclasses_serialization provides serializers/deserializers for transforming between Python dataclasses, and JSON and BSON objects.

Basic Usage

Suppose we have the following dataclass:

from dataclasses import dataclass


@dataclass
class InventoryItem:
    name: str
    unit_price: float
    quantity_on_hand: int

Then we may serialize/deserialize it to/from JSON by using JSONSerializer

>>> from dataclasses_serialization.json import JSONSerializer
>>> JSONSerializer.serialize(InventoryItem("Apple", 0.2, 20))
{'name': 'Apple', 'unit_price': 0.2, 'quantity_on_hand': 20}

>>> JSONSerializer.deserialize(InventoryItem, {'name': 'Apple', 'unit_price': 0.2, 'quantity_on_hand': 20})
InventoryItem(name='Apple', unit_price=0.2, quantity_on_hand=20)

Mongo

As Mongo collections store objects as BSON, you can use BSONSerializer to dump dataclasses directly into Mongo.

from dataclasses_serialization.bson import BSONSerializer


collection.insert_one(BSONSerializer.serialize(item))

item = BSONSerializer.deserialize(InventoryItem, collection.find_one())

Custom Serializers

To create a custom serializer, create an instance of dataclasses_serialization.serializer_base.Serializer:

from dataclasses_serialization.serializer_base import noop_serialization, noop_deserialization, dict_serialization, dict_deserialization, list_deserialization, Serializer


JSONSerializer = Serializer(
    serialization_functions={
        dict: lambda dct: dict_serialization(dct, key_serialization_func=JSONSerializer.serialize, value_serialization_func=JSONSerializer.serialize),
        list: lambda lst: list(map(JSONSerializer.serialize, lst)),
        (str, int, float, bool, type(None)): noop_serialization
    },
    deserialization_functions={
        dict: lambda cls, dct: dict_deserialization(cls, dct, key_deserialization_func=JSONSerializer.deserialize, value_deserialization_func=JSONSerializer.deserialize),
        list: lambda cls, lst: list_deserialization(cls, lst, deserialization_func=JSONSerializer.deserialize),
        (str, int, float, bool, type(None)): noop_deserialization
    }
)

Reference

dataclasses_serialization.serializer_base

A collection of utilities to make it easier to create serializers.

  • isinstance(o, t), issubclass(cls, clsinfo)

    Extended versions of the builtin isinstance and issubclass, to treat dataclass as a superclass for dataclasses, and to be usable with supported typing types.

  • noop_serialization(obj), noop_deserialization(cls, obj)

    The trivial serialization/deserialization functions, which serialize by doing nothing.

  • dict_to_dataclass(cls, dct, deserialization_func=noop_deserialization)

    The inverse of dataclasses.asdict, which deserializes a dictionary dct to a dataclass cls, using deserialization_func to deserialize the fields of cls.

    Fields are deserialized using the type provided by the dataclass. So bound generic dataclasses may be deserialized, while unbound ones may not.

  • union_deserialization(type_, obj, deserialization_func=noop_deserialization)

    Deserialize a Union type_, by trying each type in turn, and returning the first that does not raise a DeserializationError.

    As Optionals are implemented as Unions, this function also works for them.

  • dict_serialization(obj, key_serialization_func=noop_serialization, value_serialization_func=noop_serialization), dict_deserialization(type_, obj, key_deserialization_func=noop_deserialization, value_deserialization_func=noop_deserialization)

    Serialize/deserialize a dictionary obj by applying the appropriate serialization/deserialization functions to keys and values.

  • list_deserialization(type_, obj, deserialization_func=noop_deserialization)

    Deserialize a list obj by applying the deserialization function to its values.

  • Serializer(serialization_functions, deserialization_functions)

    The general serialization class.

    Takes two dictionaries of serialization and deserialization functions, and defers to them appropriately when serializing/deserializing and object by the serialize and deserialize methods. Serializer functions take a single parameter, the object to be serialized, and returns a serialized version of it. Deserializer functions take two parameters, the desired type of the deserialized object, and the object to be deserialized.

    If an object's type cannot be found directly in the serialization/deserialization functions, the Serializer uses its closest ancestor - raising an error in case of ambiguity.

    By default dataclasses are serialized as though they are dicts. Similarly, dataclasses are deserialized using dict_to_dataclass, and Unions using union_deserialization, using itself as the nested deserialization function.

    Serialize a Python object with serializer.serialize(obj), and deserialize with serializer.deserialize(cls, serialized_obj).

    Register more serialization/deserialization functions with serializer.register_serializer(cls, func), serializer.register_deserializer(cls, func), and serializer.register(cls, serialization_func, deserialization_func). They can also be used as decorators like so:

    @serializer.register_serializer(int)
    def int_serializer(obj):
        ...
    
    @serializer.register_deserializer(int)
    def int_deserializer(cls, obj):
        ...
    
  • SerializationError, DeserializationError

    Errors to be raised when serialization/deserialization fails, respectively.

dataclasses_serialization.json

  • JSONSerializer

    Serializer/deserializer between Python dataclasses and JSON objects.

    >>> JSONSerializer.serialize(InventoryItem("Apple", 0.2, 20))
    {'name': 'Apple', 'unit_price': 0.2, 'quantity_on_hand': 20}
    
    >>> JSONSerializer.deserialize(InventoryItem, {'name': 'Apple', 'unit_price': 0.2, 'quantity_on_hand': 20})
    InventoryItem(name='Apple', unit_price=0.2, quantity_on_hand=20)
    
  • JSONSerializerMixin

    Adds as_json and from_json methods to dataclasses when used as a mixin.

    @dataclass
    class InventoryItem(JSONSerializerMixin):
        ...
    
    >>> InventoryItem("Apple", 0.2, 20).as_json()
    {'name': 'Apple', 'unit_price': 0.2, 'quantity_on_hand': 20}
    
    >>> InventoryItem.from_json({'name': 'Apple', 'unit_price': 0.2, 'quantity_on_hand': 20})
    InventoryItem(name='Apple', unit_price=0.2, quantity_on_hand=20)
    
  • JSONStrSerializer

    Serializer/deserializer between Python dataclasses and JSON strings.

    >>> JSONStrSerializer.serialize(InventoryItem("Apple", 0.2, 20))
    '{"name": "Apple", "unit_price": 0.2, "quantity_on_hand": 20}'
    
    >>> JSONStrSerializer.deserialize(InventoryItem, '{"name": "Apple", "unit_price": 0.2, "quantity_on_hand": 20}')
    InventoryItem(name='Apple', unit_price=0.2, quantity_on_hand=20)
    
  • JSONStrSerializerMixin

    Adds as_json_str and from_json_str methods to dataclasses when used as a mixin.

    @dataclass
    class InventoryItem(JSONStrSerializerMixin):
        ...
    
    >>> InventoryItem("Apple", 0.2, 20).as_json_str()
    '{"name": "Apple", "unit_price": 0.2, "quantity_on_hand": 20}'
    
    >>> InventoryItem.from_json_str('{"name": "Apple", "unit_price": 0.2, "quantity_on_hand": 20}')
    InventoryItem(name='Apple', unit_price=0.2, quantity_on_hand=20)
    

dataclasses_serialization.bson

  • BSONSerializer

    Serializer/deserializer between Python dataclasses and BSON objects.

    >>> BSONSerializer.serialize(InventoryItem("Apple", 0.2, 20))
    {'name': 'Apple', 'unit_price': 0.2, 'quantity_on_hand': 20}
    
    >>> BSONSerializer.deserialize(InventoryItem, {'name': 'Apple', 'unit_price': 0.2, 'quantity_on_hand': 20})
    InventoryItem(name='Apple', unit_price=0.2, quantity_on_hand=20)
    
  • BSONSerializerMixin

    Adds as_bson and from_bson methods to dataclasses when used as a mixin.

    @dataclass
    class InventoryItem(BSONSerializerMixin):
        ...
    
    >>> InventoryItem("Apple", 0.2, 20).as_bson()
    {'name': 'Apple', 'unit_price': 0.2, 'quantity_on_hand': 20}
    
    >>> InventoryItem.from_bson({'name': 'Apple', 'unit_price': 0.2, 'quantity_on_hand': 20})
    InventoryItem(name='Apple', unit_price=0.2, quantity_on_hand=20)
    
  • BSONStrSerializer

    Serializer/deserializer between Python dataclasses and binary BSON strings.

  • BSONStrSerializerMixin

    Adds as_bson_str and from_bson_str methods to dataclasses when used as a mixin.

    @dataclass
    class InventoryItem(BSONStrSerializerMixin):
        ...
    

Installation

Install and update using the standard Python package manager pip:

pip install dataclasses_serialization

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dataclasses_serialization-1.3.1.tar.gz (9.9 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file dataclasses_serialization-1.3.1.tar.gz.

File metadata

  • Download URL: dataclasses_serialization-1.3.1.tar.gz
  • Upload date:
  • Size: 9.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for dataclasses_serialization-1.3.1.tar.gz
Algorithm Hash digest
SHA256 7f9cf6b11e0650ab89691b1a0050dcce3aef4d389dd4540a53316c4151485921
MD5 973a56e5f8d93a0ad72d2909d9d271f8
BLAKE2b-256 0edfbda785530cf0fffb7f3531523895e1410ec22b5fe02c54f1e5de93d47b74

See more details on using hashes here.

File details

Details for the file dataclasses_serialization-1.3.1-py3-none-any.whl.

File metadata

  • Download URL: dataclasses_serialization-1.3.1-py3-none-any.whl
  • Upload date:
  • Size: 12.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for dataclasses_serialization-1.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 34294b1a68944c8d8ac00d2a53aecb8499301401aec6d024ba829ac3931e3b2a
MD5 692655a9e0769f695892eb7d11271f2e
BLAKE2b-256 b00dae12e543270d4c18bef96ba79a5cfe8a424068f234184fb02fdc214f8593

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page