Skip to main content

Easily serialize dataclasses to and from tensors

Project description

Dataclasses Tensor

The library provides a simple API for encoding and decoding Python dataclasses to and from tensors (PyTorch tensors or NumPy arrays) based on typing annotations.

Heavily inspired by dataclasses-json package.

Install

pip install dataclasses-tensor

Quickstart

Tensor representation for a game state in Chess:

from dataclasses import dataclass, field
from enum import Enum
from typing import Optional, List

from dataclasses_tensor import dataclass_tensor, config

class Player(Enum):
  WHITE = 0
  BLACK = 1

class PieceType(Enum):
  PAWN = 0
  BISHOP = 1
  KNIGHT = 2
  ROOK = 3
  QUEEN = 4
  KING = 5

@dataclass
class Piece:
  piece_type: PieceType
  owner: Player

@dataclass_tensor
@dataclass
class Chess:
  num_moves: float
  next_move: Player
  board: List[Optional[Piece]] = field(metadata=config(shape=(64,)))

Working with tensors:

>>> state = Chess(100., next_move=Player.WHITE, board=[Piece(PieceType.KING, Player.BLACK)])
>>> t1 = state.to_numpy()
array([100.,   1.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   1.,   0.,
         1.,   1.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   1.,
...
>>> t1.shape
(579,)
>>> Chess.from_numpy(t1)
Chess(num_moves=100., next_move=<Player.WHITE: 0>, board=[Piece(piece_type=<PieceType.KING: 5>, owner=<Player.BLACK: 1>), ...])

Types

Data Classes

The library uses type annotations to determine appropriate encoding layout. Data class member variables serialized sequentially. See supported types listed below.

Primitives (int, float, bool)

The library supports numerical primitives (int, float) and bool. Strings and byte arrays are not supported.

Warning: be careful with tensor dtype as an implicit type conversion could potentially lead to losing information (for example, writing float into int32 tensor and reading it back won't produce expected result).

Enums

Python Enums are encoded using one-hot encoding.

>>> from dataclasses_tensor import dataclass_tensor
>>> from dataclasses import dataclass
>>> from enum import Enum
>>>
>>> class Matrix(Enum):
...     THE_MATRIX = 1
...     RELOADED = 2
...     REVOLUTIONS = 3
...
>>> @dataclass_tensor
... @dataclass
... class WatchList:
...     matrix: Matrix
...
>>> WatchList(Matrix.RELOADED).to_numpy()
array([0., 0., 1.])
>>> WatchList.from_numpy(_)
WatchList(matrix=<Matrix.RELOADED: 2>)

Optional

typing.Optional type is encoded using additional dimension prior to the main datatype.

>>> from typing import Optional
>>>
>>> @dataclass_tensor
... @dataclass
... class MaybeWatchList:
...     matrix: Optional[Matrix]
>>>
>>> MaybeWatchList(Matrix.RELOADED).to_numpy()
array([0., 0., 1., 0.])
>>> MaybeWatchList.from_numpy([0., 0., 1., 0.])
MaybeWatchList(matrix=<Matrix.RELOADED: 2>)
>>> MaybeWatchList.from_numpy([1., 0., 0., 0.])
MaybeWatchList(matrix=None)

The layout described for Optional[Enum] is consistent with having None as additional option into enumeration.

Arrays

Arrays, defined either using typing.List or [] (supported in Python3.9+), require size to be statically provided. See example:

>>> from typing import List
>>> from dataclasses_tensor import config

>>> @dataclass_tensor
... @dataclass
... class MultipleWatchList:
...     matrices: List[Matrix] = field(metadata=config(shape=(2,)))
>>>
>>> MultipleWatchList([Matrix.THE_MATRIX, Matrix.RELOADED]).to_numpy()
array([1., 0., 0., 0., 1., 0.])
>>> MultipleWatchList.from_numpy([1., 0., 0., 0., 1., 0.])
MultipleWatchList(matrices=[<Matrix.THE_MATRIX: 1>, <Matrix.RELOADED: 2>])

Nested lists are supported, note multidimensional shape configuration:

>>> @dataclass_tensor
... @dataclass
... class MultipleWatchList:
...     matrices: List[List[Matrix]] = field(metadata=config(shape=(1,2)))
>>>
>>> MultipleWatchList([[Matrix.THE_MATRIX, Matrix.RELOADED]]).to_numpy()
array([1., 0., 0., 0., 1., 0.])
>>> MultipleWatchList.from_numpy([1., 0., 0., 0., 1., 0.])
MultipleWatchList(matrices=[[<Matrix.THE_MATRIX: 1>, <Matrix.RELOADED: 2>]])

If List argument is Optional, the list is automatically padded to the right shape with Nones.

>>> @dataclass_tensor
... @dataclass
... class MaybeMultipleWatchList:
...     matrices: List[Optional[Matrix]] = field(metadata=config(shape=(3,)))
>>>
>>> MaybeMultipleWatchList([Matrix.THE_MATRIX, Matrix.RELOADED]).to_numpy()
array([0., 1., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0.])
>>> MaybeMultipleWatchList.from_numpy([0., 1., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0.])
MaybeMultipleWatchList(matrices=[<Matrix.THE_MATRIX: 1>, <Matrix.RELOADED: 2>, None])

Union

typing.Union is encoded by allocating one-hot tensor to determine which option from the union is given following by corresponding layouts for all options.

>>> from typing import Union
>>>
>>> class Batman(Enum):
...     BEGINS = 1
...     DARK_KNIGHT = 2
...     DARK_KINGHT_RISES = 3
...
>>> @dataclass_tensor
... @dataclass
... class WatchList:
...     next_movie: Union[Matrix, Batman]
...
>>> WatchList(Matrix.RELOADED).to_numpy()
array([1., 0., 0., 1., 0., 0., 0., 0.])
>>> WatchList.from_numpy(_)
WatchList(next_movie=<Matrix.RELOADED: 2>)
>>> WatchList(Batman.DARK_KNIGHT).to_numpy()
array([0., 1., 0., 0., 0., 0., 1., 0.])
>>> WatchList.from_numpy(_)
WatchList(next_movie=<Batman.DARK_KNIGHT: 2>)

Decoding is a fairly straigtforward process though encoding might be somewhat problematic: Python's typing is not designed to provide separation-by-construction for union types. The library uses simple isinstance checks to test out all types provided against a given value, first match is used. The library does not traverse generics, origins, supertypes, etc. So, be diligent defining of Union.

Recursive Definitions

Recursive definitions, like linked lists, trees, graphs etc, are not supported. From a usability and performance point of view, it's crucial for encoder/decoder to be able to evaluate statically output tensor size.

Targets

The library supports the following containers as tensors:

The best way to work with TensorFlow tensors is to use NumPy ndarrays and convert result with tensorflow.convert_to_tensor (as the tensor stored in memory as a ndarray anywyas).

Note, that dependencies are not installed with the library itself (TensorFlow, PyTorch or NumPy) and should be provided at runtime.

Performance

Tensor layout is not cached and is computed for each operation. When performing a lot of operations with class definition staying the same, it makes sense to re-use layout. For example:

>>> class Matrix(Enum):
...     THE_MATRIX = 1
...     RELOADED = 2
...     REVOLUTIONS = 3
...
>>> @dataclass_tensor
... @dataclass
... class WatchList:
...     matrix: Matrix
...
>>> layout = WatchList.tensor_layout()
>>> WatchList(Matrix.RELOADED).to_numpy(tensor_layout=layout)
array([0., 0., 1.])
>>> WatchList.from_numpy(_, tensor_layout=layout)
WatchList(matrix=<Matrix.RELOADED: 2>)

Advanced Features

Dtype

The library supports float and integer (long) tensors. The data type could be specified either as a parameter to the dataclass_tensor decorator (applied to all operations) or independently as an argument to to_tensor function call. See examples below.

dtype argument is passed to the corresponding target library, e.g. NumPy (docs), PyTorch (docs) or TensorFlow.

>>> class Matrix(Enum):
...     THE_MATRIX = 1
...     RELOADED = 2
...     REVOLUTIONS = 3
...
>>> @dataclass_tensor
... @dataclass
... class WatchList:
...     matrix: Matrix
...
>>> WatchList(Matrix.RELOADED).to_numpy()
array([0., 0., 1.], dtype=float32)
>>> WatchList(Matrix.RELOADED).to_numpy(dtype="int32")
array([0, 0, 1], dtype=int32)

or with defaults setup in a decorator

>>> class Matrix(Enum):
...     THE_MATRIX = 1
...     RELOADED = 2
...     REVOLUTIONS = 3
...
>>> @dataclass_tensor(dtype="int32")
... @dataclass
... class WatchList:
...     matrix: Matrix
...
>>> WatchList(Matrix.RELOADED).to_numpy()
array([0, 0, 1], dtype=int32)

Batch

To create batch, use batch=True parameter. See examples:

>>> class Matrix(Enum):
...     THE_MATRIX = 1
...     RELOADED = 2
...     REVOLUTIONS = 3
...
>>> @dataclass_tensor
... @dataclass
... class WatchList:
...     matrix: Matrix
...
>>> WatchList.to_numpy([
...     WatchList(Matrix.THE_MATRIX),
...     WatchList(Matrix.RELOADED),
... ], batch=True)
array([[1., 0., 0.],
       [0., 1., 0.]], dtype=float32)
>>> WatchList.from_numpy(_, batch=True)
[WatchList(next_move=<Matrix.THE_MATRIX: 0>),
 WatchList(next_move=<Matrix.RELOADED: 1>)]

batch_size could be used to provide length hint (to ensure good performance when working with generators):

>>> WatchList.to_numpy((
...     WatchList(Matrix.THE_MATRIX),
...     WatchList(Matrix.RELOADED),
... ), batch_size=2)
array([[1., 0., 0.],
       [0., 1., 0.]], dtype=float32)
>>> WatchList.from_numpy(_, batch_size=2)
[WatchList(next_move=<Matrix.THE_MATRIX: 0>),
 WatchList(next_move=<Matrix.RELOADED: 1>)]

Custom Attribute Resolver

TBD

TODO

  • Custom attribute resolver (e.g. from dict instead of class instance)
  • Pretty-print for tensor layout object

Contributing

  • Check for open issues or open a fresh issue to start a discussion around a feature idea or a bug.
  • Fork the repository on Github & branch from main to feature-* to start making your changes.
  • Write a test which shows that the bug was fixed or that the feature works as expected.

or simply...

  • Use it.
  • Enjoy it.
  • Spread the word.

License

Copyright © 2021, Oleksii Kachaiev.

dataclasses-tensor is licensed under the MIT license, available at MIT and also in the LICENSE file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

dataclasses_tensor-0.2.6-py3-none-any.whl (10.2 kB view details)

Uploaded Python 3

File details

Details for the file dataclasses-tensor-0.2.6.macosx-10.15-x86_64.tar.gz.

File metadata

  • Download URL: dataclasses-tensor-0.2.6.macosx-10.15-x86_64.tar.gz
  • Upload date:
  • Size: 15.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.6

File hashes

Hashes for dataclasses-tensor-0.2.6.macosx-10.15-x86_64.tar.gz
Algorithm Hash digest
SHA256 da54d4d4d7de6e8ed1ac8f78e31ba2cbe43c36bf8409c49fc136774e5383ca66
MD5 9a64c6888ac5b26127393bacd192c5be
BLAKE2b-256 73eab1836203072bbb0bd760c05d28685bcfe2b695fa0a400c3ae54a24229fcd

See more details on using hashes here.

File details

Details for the file dataclasses_tensor-0.2.6-py3-none-any.whl.

File metadata

  • Download URL: dataclasses_tensor-0.2.6-py3-none-any.whl
  • Upload date:
  • Size: 10.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.6

File hashes

Hashes for dataclasses_tensor-0.2.6-py3-none-any.whl
Algorithm Hash digest
SHA256 e840b5f35c7387c24226c133621fa5d30a3f8293c5a2d0a1fb8c01238f012cf3
MD5 0daa9034f63b48519ba8cdb62cc3bd2c
BLAKE2b-256 8b9f4ff4bcb693f922a10038955b00f1f189f1eea165e3e2c80f792271547834

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page