Skip to main content

Slightly improved dataclasses

Project description

The Python built-in datacls is almost perfect, and this module just adds a little bit on top of it to smooth the rough edges a bit.


@datacls.mutable is @dataclasses.dataclass() , except:


@datacls.immutable or just @datacls is like datacls.mutable except frozen=True by default.


datacls.field() just like dataclasses.field() except default_factory is now (also) a positional parameter.

Usage examples

import datacls
from typing import Dict

@datacls
class One:
    one: str = 'one'
    two: int = 2
    three: Dict = datacls.field(dict)  # Simplified `field`

#
# Three new instance methods
#
o = One()
assert o.asdict() == {'one': 'one', 'two': 2, 'three': {}}
assert o.astuple() == ('one', 2, {})

o2 = o.replace(one='seven', three={'nine': 9})
assert o2 == One('seven', 2, {'nine': 9})

#
# A new class method
#
assert [f.name for f in One.fields()] == ['one', 'two', 'three']

#
# Immutable by default
#
try:
    o.one = 'three'
except AttributeError:
    pass
else:
    raise AttributeError('Was mutable!')

@datacls.mutable
class OneMutable:
    one: str = 'one'
    two: int = 2
    three: Dict = datacls.field(dict)

om = OneMutable()
om.one = 'three'
assert str(om) == "OneMutable(one='three', two=2, three={})"

#
# These four new methods won't break your old dataclses:
#
@datacls
class Overloads:
    one: str = 'one'
    asdict: int = 1
    astuple: int = 1
    fields: int = 1
    replace: int = 1

o = Overloads()
assert ov.one == 'one'
assert ov.asdict == 1
assert ov.astuple == 1
assert ov.fields == 1
assert ov.replace == 1

# In this case, you can access them as functions on `datacls`:
assert (
    datacls.asdict(ov) ==
    {'asdict': 1, 'astuple': 1, 'fields': 1, 'one': 'one', 'replace': 1}
)

assert datacls.astuple(ov) == ('one', 1, 1, 1, 1)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datacls-4.0.0.tar.gz (3.9 kB view details)

Uploaded Source

Built Distribution

datacls-4.0.0-py3-none-any.whl (3.8 kB view details)

Uploaded Python 3

File details

Details for the file datacls-4.0.0.tar.gz.

File metadata

  • Download URL: datacls-4.0.0.tar.gz
  • Upload date:
  • Size: 3.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.0

File hashes

Hashes for datacls-4.0.0.tar.gz
Algorithm Hash digest
SHA256 b99702650a7833973c3008e9d747e4723a83474871c1756780d322b78fe691f9
MD5 b95e1062cd3c1383a4b84dc27138c237
BLAKE2b-256 0353720f8265389ba60066f23d2f51a5eb650617eb09c3869abde2bfaeb81cfc

See more details on using hashes here.

File details

Details for the file datacls-4.0.0-py3-none-any.whl.

File metadata

  • Download URL: datacls-4.0.0-py3-none-any.whl
  • Upload date:
  • Size: 3.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.0

File hashes

Hashes for datacls-4.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b77ddf07baf199248eca15bb44ce45d1b7a77b291bf742341b94aaa648a768bb
MD5 d9abcec127f575ee54d8fb38f8b4de49
BLAKE2b-256 72b9bca8391ed07e951a868f7fcfa1d2ba2f55997477439a3496ca1734078030

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page