Skip to main content

Simple dataclasses configuration management for Python with hocon/json/yaml/properties/env-vars/dict support.

Project description

Dataconf

Actions Status PyPI version

Simple dataclasses configuration management for Python with hocon/json/yaml/properties/env-vars/dict support, based on awesome and lightweight pyhocon parsing library.

Getting started

Requires at least Python 3.8.

# pypi
pip install dataconf
poetry add dataconf

# remote master
pip install --upgrade git+https://github.com/zifeo/dataconf.git
poetry add git+https://github.com/zifeo/dataconf.git

# local repo/dev
poetry install
pre-commit install

Usage

import os
from dataclasses import dataclass, field
from typing import List, Dict, Text, Union
from dateutil.relativedelta import relativedelta
from datetime import datetime
import dataconf

conf = """
str_name = test
str_name = ${?HOME}
dash-to-underscore = true
float_num = 2.2
iso_datetime = "2000-01-01T20:00:00"
# this is a comment
list_data = [
    a
    b
]
nested {
    a = test
    b : 1
}
nested_list = [
    {
        a = test1
        b : 2.5
    }
]
duration = 2s
union = 1
people {
    name = Thailand
}
zone {
    area_code = 42
}
"""

class AbstractBaseClass:
    pass
    
@dataclass
class Person(AbstractBaseClass):
    name: Text
        
@dataclass
class Zone(AbstractBaseClass):
    area_code: int

@dataclass
class Nested:
    a: Text
    b: float

@dataclass
class Config:
    str_name: Text
    dash_to_underscore: bool
    float_num: float
    iso_datetime: datetime
    list_data: List[Text]
    nested: Nested
    nested_list: List[Nested]
    duration: relativedelta
    union: Union[Text, int]
    people: AbstractBaseClass
    zone: AbstractBaseClass
    default: Text = 'hello'
    default_factory: Dict[Text, Text] = field(default_factory=dict)

print(dataconf.string(conf, Config))
# Config(
#   str_name='/users/root',
#   dash_to_underscore=True,
#   float_num=2.2,
#   list_data=['a', 'b'],
#   nested=Nested(a='test'),
#   nested_list=[Nested(a='test1', b=2.5)],
#   duration=relativedelta(seconds=+2), 
#   union=1, 
#   people=Person(name='Thailand'), 
#   zone=Zone(area_code=42),
#   default='hello', 
#   default_factory={}
# )

@dataclass
class Example:
    hello: string
    world: string

os.environ['DC_WORLD'] = 'monde'

print(
    dataconf
    .multi
    .url('https://raw.githubusercontent.com/zifeo/dataconf/master/confs/simple.hocon')
    .env('DC')
    .on(Example)
)
# Example(hello='bonjour',world='monde')

API

import dataconf

conf = dataconf.string('{ name: Test }', Config)
conf = dataconf.env('PREFIX_', Config)
conf = dataconf.dict({'name': 'Test'}, Config)
conf = dataconf.url('https://raw.githubusercontent.com/zifeo/dataconf/master/confs/test.hocon', Config)
conf = dataconf.file('confs/test.{hocon,json,yaml,properties}', Config)

# Aggregation
conf = dataconf.multi.string(...).env(...).url(...).file(...).dict(...).on(Config)

# Same api as Python json/yaml packages (e.g. `load`, `loads`, `dump`, `dumps`)
conf = dataconf.load('confs/test.{hocon,json,yaml,properties}', Config)
dataconf.dump('confs/test.hocon', conf, out='hocon')
dataconf.dump('confs/test.json', conf, out='json')
dataconf.dump('confs/test.yaml', conf, out='yaml')
dataconf.dump('confs/test.properties', conf, out='properties')

For full HOCON capabilities see here.

Env dict/list parsing

PREFIX_VAR=a
PREFIX_VAR_NAME=b
PREFIX_TEST__NAME=c
PREFIX_LS_0=d
PREFIX_LS_1=e
PREFIX_LSLS_0_0=f
PREFIX_LSOB_0__NAME=g
PREFIX_NESTED_="{ name: Test }"
PREFIX_SUB_="{ value: ${PREFIX_VAR} }"

is equivalent to

{
    var = a
    var_name = b
    test {
        name = c
    }
    ls = [
        d
        e
    ]
    lsls = [
        [
            f
        ]
    ]
    lsob = [
        {
            name = g
        }
    ]
    nested {
        # parse nested config by suffixing env var with `_`
        name: Test
    }
    sub {
        # will have value "a" at parsing, useful for aliases
        value = ${PREFIX_VAR}
    }
}

Note that when using .env source, the strict mode is disabled and value might be casted.

CLI usage

Can be used for validation or converting between supported file formats (-o).

dataconf -c confs/test.hocon -m tests.configs -d TestConf -o hocon
# dataconf.exceptions.TypeConfigException: expected type <class 'datetime.timedelta'> at .duration, got <class 'int'>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dataconf-1.5.0.tar.gz (14.3 kB view hashes)

Uploaded source

Built Distribution

dataconf-1.5.0-py3-none-any.whl (14.1 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page