Skip to main content

DataHeroes - Build Better ML Models 10x Faster

Project description

DataHeroes

DataHeroes is a Python library that solves some of today’s biggest machine learning challenges: reducing the time, effort and resources required to develop and maintain high-quality machine learning models.

DataHeroes uses a unique methodology called Coresets, originating in computational geometry, to reduce the size of the dataset to a small subset that maintains the statistical properties and corner cases of the full dataset, such that solving a problem on the Coreset will yield the same result as solving it on the full dataset (to learn more about Coresets, visit our Introduction to Coresets page).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

dataheroes-0.3.1-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

dataheroes-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

dataheroes-0.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (17.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

dataheroes-0.3.1-cp310-cp310-macosx_12_0_arm64.whl (2.9 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

dataheroes-0.3.1-cp310-cp310-macosx_10_15_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

dataheroes-0.3.1-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

dataheroes-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

dataheroes-0.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (17.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

dataheroes-0.3.1-cp39-cp39-macosx_12_0_arm64.whl (2.9 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

dataheroes-0.3.1-cp39-cp39-macosx_10_15_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

dataheroes-0.3.1-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

dataheroes-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

dataheroes-0.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (17.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

dataheroes-0.3.1-cp38-cp38-macosx_12_0_arm64.whl (2.9 MB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

dataheroes-0.3.1-cp38-cp38-macosx_10_15_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file dataheroes-0.3.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for dataheroes-0.3.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 466e6f8bdfcdca413337d774e87bf165acb3d7b14d1735ce42c94f69a2c1ef8c
MD5 8312a323665bb94e997261dcb7f78c68
BLAKE2b-256 313c4935372627dfbae9aacc10447baa74b684c78df53fd00bdba71576c7b39b

See more details on using hashes here.

File details

Details for the file dataheroes-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dataheroes-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7c2f0b467c7b9702177d7157db1a01011236c5897e7643dca33d3903d987b43a
MD5 4b639a216aece85ade86d39a94038395
BLAKE2b-256 fe2de924b5a48e14ec10ef6aff39f8f3e268870f48a0c0a684bfb50413d4878d

See more details on using hashes here.

File details

Details for the file dataheroes-0.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dataheroes-0.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7a03d12880aa3e0c2ed71ed6c73703e873c8404b077cf6a5453c0761912a72b1
MD5 46d83fc8f302b4b8b5082d4c83a661a9
BLAKE2b-256 83c6c3960066d52d469ecc8d0c33b823bbbc72f04c5aaf545d10e2ef525a3c3e

See more details on using hashes here.

File details

Details for the file dataheroes-0.3.1-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for dataheroes-0.3.1-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 47d68a5a43b07779b70f35ddedfb0eebb1eb79c13e57ac87c56a11cdc069826b
MD5 686b8c338df4ae86eb74179fe41ca5d0
BLAKE2b-256 7bae4177d22f8cb6ba2f4014b7d103d9dccb4db0cccbd39a069036d30dba7b00

See more details on using hashes here.

File details

Details for the file dataheroes-0.3.1-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for dataheroes-0.3.1-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 26d36f560911b5314d6cd1de84c53ace1ed17d6d2e766d2438da1e48a2defd29
MD5 7f502d6c30ea822487ce55c532ae3c54
BLAKE2b-256 3430e3a7fa56533453fd948c49c9dbb1a96d9fbd37ffab6ee1aeec726e33c05e

See more details on using hashes here.

File details

Details for the file dataheroes-0.3.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for dataheroes-0.3.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bd0eea2299087b6a731bd45dff21ec4ec405dd8ad6c144ee1c47750781607713
MD5 9856a5619c461380bfeb2fddb34a5a7a
BLAKE2b-256 434dc3f076b361bf501f357e015f93425b9594e295e539cbd85f4bdf0ad72d53

See more details on using hashes here.

File details

Details for the file dataheroes-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dataheroes-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2205e9983bc96ea0c27689112a194911a82cdc7efdad75745006d93a78fb4d2b
MD5 c3204753335b61d352762efd02243ba0
BLAKE2b-256 eca827f39f416c473cc38fb1ef3dde1190b5aa069fa1c6251933d2413130e0b9

See more details on using hashes here.

File details

Details for the file dataheroes-0.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dataheroes-0.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 42594cb5183d35bd406132a171d84ac924b559a687b6594efea1f2ec3087ecd6
MD5 9ccc0c8bd75b7f98524b543dd736c0ec
BLAKE2b-256 b9781a071a805a3914cc746d7bc332313b56daaf9083d9b13f7060eba754aa83

See more details on using hashes here.

File details

Details for the file dataheroes-0.3.1-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for dataheroes-0.3.1-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 39951f9ef1b3490954be81c14d2eefc876ebea7e3443d25d495c3ab830c4e742
MD5 083759bd11d347da03bb4bd4616d7f5d
BLAKE2b-256 c22ccf1d078390b630dc88db9dd023fdd3a02d1b7f535267ae495eb1f07cba75

See more details on using hashes here.

File details

Details for the file dataheroes-0.3.1-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for dataheroes-0.3.1-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 84ca4946ce33ead2594ec28bdad50b5a045db40ba080418cea0997f91970d246
MD5 b213e8426065a376f37972d584bff05f
BLAKE2b-256 d9fc413c123116f15ffd59983b1e699de5a8e8d68f4088c8ba8581df83f890a3

See more details on using hashes here.

File details

Details for the file dataheroes-0.3.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for dataheroes-0.3.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b4af439cf87a6da3f4c8ebc7205663999f8f19d82f69d6f7bb7cdf6998acea68
MD5 31928b440fd03c2b616f8ac7bf19ead4
BLAKE2b-256 2cf85b09d92c8b46cf718f0c1c861514f5e5c9bd60176f9baf5c3045d9a14d54

See more details on using hashes here.

File details

Details for the file dataheroes-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dataheroes-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d209c555dee3f4aa2cb7f92b3b230971f8aa88a2bf45c00c8627af71c410cf84
MD5 ec839a7fbfb2de2bf74a9e4d44d16317
BLAKE2b-256 64a87e5c671771fcac984c63f176458032710abd479e9fddfef45b9b8a83d4af

See more details on using hashes here.

File details

Details for the file dataheroes-0.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dataheroes-0.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7b50ab4b156e660f74352678c85b570fbb15ae43759ac067c89af7ae9f749bd2
MD5 781fe151de48a0f43713b22d44f80f33
BLAKE2b-256 f1b95508a2f5a28fa4ffd7144cc32a33d9a5fb8a2e51b0fd23eae94feceaaea1

See more details on using hashes here.

File details

Details for the file dataheroes-0.3.1-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for dataheroes-0.3.1-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 0b584c0dd21a5b47afdec6533e62f74ec3b4fc0a01985c4ce6ebbece5e3c6997
MD5 257462794da68ea3b2e4a71cfd4c5e5c
BLAKE2b-256 aa8d55b3db1f6f86ad98ca46de6528e8a039bbb00e978bdf8425514bfc5dfd79

See more details on using hashes here.

File details

Details for the file dataheroes-0.3.1-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for dataheroes-0.3.1-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 267cf5d4a62d958f400f8fb07ea755007841720d2ca71ba2b1c0697c7e6c6fa1
MD5 f27c9ededa397d764c725ec8dd7ab863
BLAKE2b-256 5eff102fc5c355fc698c41c93da75716cded2a1b5383434be1464a7cb8e5845f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page